Return to Video

無限大はどのくらい大きい?

  • 0:14 - 0:16
    私が4年生のある日
    先生がこう言いました
  • 0:16 - 0:19
    「偶数は自然数と同じだけあります」
  • 0:19 - 0:25
    「本当に?」と思いました 確かに自然数も偶数も
    無限にあり 同じだけあると言えるかもしれませんが
  • 0:25 - 0:30
    しかしその一方で 偶数は自然数全体の
    一部に過ぎず 他に奇数もあるので
  • 0:30 - 0:33
    自然数全体は 偶数より
    たくさんあるはずです
  • 0:33 - 0:39
    先生が言わんとしたことを理解するために まず2つの
    集合の大きさが同じとはどういうことか考えてみましょう
  • 0:39 - 0:44
    右手と左手に同じ本数の指があると言うとき
    その意味するところは何でしょう?
  • 0:44 - 0:48
    もちろん どちらの手にも5本の指がありますが
    実はもっと簡単に示せます
  • 0:48 - 0:53
    数える必要はなく ただ手を合わせて
    一本ずつ重ねていけばいいのです
  • 0:53 - 0:56
    実際 3より大きい数を表す言葉のない言語を
    使っていた古代の人々は
  • 0:56 - 1:02
    このトリックを使っていたと考えられています
    例えば 囲いから羊を出し放牧するとき
  • 1:02 - 1:06
    一匹が出るごとに石を取っておき
    帰って来たら石を戻すことで
  • 1:06 - 1:09
    何匹が外にいるのか分かり
    戻ってない羊がいるかどうか
  • 1:09 - 1:12
    頭数を数えることなく
    知ることができます
  • 1:12 - 1:15
    対応付けが 数え上げより本質的である例を
    もう1つ挙げましょう
  • 1:15 - 1:20
    私が満員の講堂で話していて 席は全て埋まり
    立っている人がいないとすると
  • 1:20 - 1:23
    何人いるかは
    分からないものの
  • 1:23 - 1:26
    席数と同じ数だけ聴衆がいる
    ことが分かります
  • 1:26 - 1:28
    つまり2つの集合が同じ
    大きさであるということは
  • 1:28 - 1:33
    それぞれの集合の要素が 何らかの方法で
    1つずつ対応づけられるということです
  • 1:33 - 1:38
    私の4年生の時の先生は 自然数を1列に並べ
    その下にそれを2倍したものを書きました
  • 1:38 - 1:42
    見て分かるように 下の列は全ての偶数を含んでおり
    1対1で対応しています
  • 1:42 - 1:45
    つまり 自然数が存在するのと同じだけ
    偶数も存在するのです
  • 1:45 - 1:51
    しかし偶数は自然数の一部でしかないという事実が
    依然頭に引っかかります
  • 1:51 - 1:56
    かといって それで右手と左手の指の数が違う
    ことになるのでしょうか?
  • 1:56 - 2:01
    もちろん違います ある方法で要素を対応付け
    ようとして うまくいかなかったとしても
  • 2:01 - 2:03
    そのことから言えることは
    何もありません
  • 2:03 - 2:06
    でも2つの集合の要素を
    対応付ける方法を見つけられたなら
  • 2:06 - 2:10
    その2つの集合の要素数は
    等しいと言えるのです
  • 2:10 - 2:15
    分数は全て列挙できるでしょうか?
    難しいかもしれません 何しろ分数はたくさんあります!
  • 2:15 - 2:19
    何を最初に挙げたらいいのか?
    全て列挙されているか どうすれば分かるのか?
  • 2:19 - 2:24
    実は 全ての分数を列挙する
    うまい方法があります
  • 2:24 - 2:28
    ゲオルク・カントールが
    19世紀末に考案しました
  • 2:28 - 2:36
    まず 全ての分数を格子状上に並べます
    全部あるのが分かります 例えば117/243であれば
  • 2:36 - 2:39
    117行223列に見つかります
  • 2:39 - 2:44
    次に左上から始め 対角線上に行ったり
    来たりしてリストを作っていきます
  • 2:44 - 2:49
    2/2のように 前に出てきたのと
    同じ数は 飛ばすことにします
  • 2:49 - 2:53
    すると全ての分数のリストが得られます
    分数は自然数より多いはずですが
  • 2:53 - 2:58
    それでも自然数全体と分数全体の間で
    1対1の対応付けができるのです
  • 2:58 - 3:01
    本当に面白くなるのはここからです
  • 3:01 - 3:06
    ご存知かもしれませんが 実数 つまり数直線上にある
    数は すべてが分数であるわけではありません
  • 3:06 - 3:09
    2の平方根や πなどがその例です
  • 3:09 - 3:15
    このような数は無理数(irrational)といいます
    そんな数は不合理だというわけではなく
  • 3:15 - 3:21
    分数は整数の比(ratio)であるために有理数(rational)と呼ばれ
    それ以外は有理数でない つまり無理数なのです
  • 3:21 - 3:25
    無理数は非循環小数で表されます
  • 3:25 - 3:29
    自然数全体と 有理数・無理数両方を含む
    小数全体の集合の間で
  • 3:29 - 3:34
    1対1の対応付けは可能なのでしょうか?
    つまり小数全体は列挙できるのでしょうか?
  • 3:34 - 3:39
    カントールはそれが不可能であることを証明しました
    単に方法を知らないということではなく 不可能なのです
  • 3:39 - 3:46
    仮に小数全体を列挙したとしましょう
    これからそのリストにない小数を作ることで
  • 3:46 - 3:48
    そのリストが不完全であることを示します
  • 3:48 - 3:51
    問題の小数を1桁ずつ作って行きます
  • 3:51 - 3:55
    小数第1位を決めるために
    リスト中で最初の数の小数第1位に注目します
  • 3:55 - 4:00
    もしその数が1だったら2を
    それ以外なら1を選びます
  • 4:00 - 4:05
    小数第2位を決めるために
    2番目の数の小数第2位に注目します
  • 4:05 - 4:09
    ここでも同様に その数が1であれば2を
    そうでなければ1を選びます
  • 4:09 - 4:14
    どうなるかお分かりでしょうか?
    そうして作った小数は このリスト中に存在し得ないのです
  • 4:14 - 4:21
    なぜでしょう? その数は 例えば143番目の数で
    ありうるでしょうか? いいえ この小数の小数第143位は
  • 4:21 - 4:25
    リストの143番目の数の小数第143位とは異なります
    そうなるように作ったんです
  • 4:25 - 4:29
    リストは不完全だったわけです
    今作った小数が含まれていません
  • 4:29 - 4:34
    どんなリストを与えられようと 同様の操作で
    そのリストに無い小数を作ることができます
  • 4:34 - 4:37
    つまり 我々は驚くべき
    事実に直面したわけです
  • 4:37 - 4:43
    小数は列挙不可能なのです 小数の全体は
    自然数全体の無限大よりも大きな無限大ということです
  • 4:43 - 4:49
    我々に馴染み深い無理数は 2の平方根や
    円周率など わずかしかありませんが
  • 4:49 - 4:52
    無理数全体の無限大は
    分数の無限大よりも大きいのです
  • 4:52 - 4:57
    かつてこう言った人がいます
    有理数 (分数) は 夜空の星のようであり
  • 4:57 - 5:01
    無理数は 夜空の黒い部分のようだと
  • 5:01 - 5:07
    カントールはまた どのような無限集合に対しても
    その集合の部分集合全体からなる集合を構成すると
  • 5:07 - 5:12
    元の集合よりも高位の無限大が得られることも示しました
    無限集合があれば
  • 5:12 - 5:18
    その部分集合全体の集合を作ることで より大きな集合が得られ
    その結果に対して同じ操作をすれば
  • 5:18 - 5:22
    さらに大きな集合が得られ
    それをいくらでも繰り返していけます
  • 5:22 - 5:26
    異なる大きさの無限大が
    無数に存在するのです
  • 5:26 - 5:31
    この考えに納得いかないとしたら それはあなただけではありません
    カントールの時代の偉大な数学者の中にも
  • 5:31 - 5:35
    これにうろたえた人がいたのです
    彼らはこの概念無しでも数学が成り立つように
  • 5:35 - 5:38
    無限大の違いを無意味なものに
    しようと試みました
  • 5:38 - 5:42
    カントールは個人的にも中傷されたために
    重度の鬱に悩まされ
  • 5:42 - 5:46
    精神病院への入退院を繰り返しながら
    半生を過ごしました
  • 5:46 - 5:51
    しかし結果的に彼の考えが勝ちました
    今日では根本的かつ偉大な業績だと考えられています
  • 5:51 - 5:56
    全ての数学研究者がこのアイデアを受け入れ
    全ての数学科の学生が学び
  • 5:56 - 5:58
    私は数分でこの考えを
    説明しました
  • 5:58 - 6:01
    いつの日にか
    一般常識になっているかもしれません
  • 6:01 - 6:06
    話には続きがあります 全ての小数(実数)の集合は
    自然数全体の集合より高位の無限大だと指摘しましたが
  • 6:06 - 6:10
    カントールは これら2つの無限大の間に
    異なる大きさの無限大は無いかと考えました
  • 6:10 - 6:14
    彼は ないだろうと考えていたものの
    それを証明することはできませんでした
  • 6:14 - 6:18
    カントールの予想は「連続体仮説」として
    知られるようになりました
  • 6:18 - 6:24
    1900年に偉大な数学者ダフィット・ヒルベルトは
    数学における最も重要な未解決問題の1つとして
  • 6:24 - 6:26
    この連続体仮説を挙げました
  • 6:26 - 6:32
    20世紀中にこの問題は解決されましたが その結論は
    全く予想外で 旧来の考えを根底から覆すものでした
  • 6:32 - 6:38
    1920年代にクルト・ゲーデルが 連続体仮説を偽であると
    証明することは不可能だと示し
  • 6:38 - 6:43
    1960年代にポール・J ・コーエンが 連続体仮説を
    真であると証明することも不可能だと示したのです
  • 6:43 - 6:48
    これらを合わせると
    数学には答え得ない問が存在することになります
  • 6:48 - 6:50
    実に驚くべき結論です
  • 6:50 - 6:53
    数学は人類の英知の粋だと
    考えられていますが
  • 6:53 - 6:57
    その数学ですら理解に限りが
    あることが分かったのです
  • 6:57 - 7:01
    それでも数学には 我々が考えるべき
    本当に素晴らしいものあります
Title:
無限大はどのくらい大きい?
Speaker:
Dennis Wildfogel
Description:

基礎的な集合論を用いて「無限の無限大」という奇妙な概念を探り、それがどのように数学にも答えられない問題があるという結論に数学者を導くことになったのか辿ってみましょう。
先生: デニス・ワイルドフォーゲル
アニメーション: Augenblick Studios
※この教材のページ http://ed.ted.com/lessons/how-big-is-infinity

more » « less
Video Language:
English
Team:
closed TED
Project:
TED-Ed
Duration:
07:13
Yasushi Aoki edited Japanese subtitles for How big is infinity?
TED Translators admin edited Japanese subtitles for How big is infinity?
Yasushi Aoki approved Japanese subtitles for How big is infinity?
Yasushi Aoki accepted Japanese subtitles for How big is infinity?
Tomoshige Ohno edited Japanese subtitles for How big is infinity?
Tomoshige Ohno edited Japanese subtitles for How big is infinity?
Yasushi Aoki declined Japanese subtitles for How big is infinity?
Yasushi Aoki edited Japanese subtitles for How big is infinity?
Show all

Japanese subtitles

Revisions Compare revisions