在1885年,卡尔本茨发明了汽车。 那年年末,他把车开出去 进行第一次户外测试, 然后——真实是——他撞墙了。 在过去的130年里, 我们一直在为汽车的最薄弱环节, 驾驶员,做着努力。 我们把车做得更坚固, 我们增加了安全带,增加了安全气囊。 在过去十年里, 我们开始让车变得更智能, 是为弥补驾驶员方面的缺陷。 那么,今天我将给大家讲讲, 用驾驶员辅助系统解决问题, 和真正使用全面自动驾驶汽车的区别, 以及它们对世界的贡献。 我也会介绍一下我们的车, 让你们了解它是如何观察这个世界的, 以及如何应对各种情况, 但首先我先说说存在的问题。 这是个很严重的问题, 每年全世界都有120万人 因交通事故丧命。 仅仅在美国, 每年就有3万3千人死于车祸。 换个方式说, 等同于每天都有一架737飞机失事。 有点不可思议。 汽车卖给我们后应该是这样一番景象, 但事实上,驾驶过程通常是这样。 对吧?这不是晴天,是雨天, 而且除了开车, 你还想做点别的事情。 原因就是: 交通状况变得越来越糟。 在美国,从1990年到2010年, 交通工具的里程数增加了38%。 而我们只增修了6%的路, 所以不单单是你的感觉如此。 交通状况的确比以前糟糕得多。 所有的这一切也都伴随着人力成本。 如果你把在美的平均通勤时间, 约50分钟, 乘以我们的1亿2000万工作者, 结果就是60亿分钟, 每天会被浪费在路上。 这是个很大的数字, 那么我们换个方式, 你把这60亿分钟, 除以人均寿命, 得出数字是162个生命周期。 仅仅从A地到B地,每天就有这么多 生命白白浪费掉了。 太难以置信了。 当然,我们当中还有一些人无法享有 坐到车流中来的权利。 这个人叫史蒂夫。 他是个很有才能的人。 但很不幸,他是盲人, 这意味着本来早上 上班路上的30分钟, 变成了两个小时的 各种转乘公共交通的折磨, 或者是请求朋友或家人载他一程。 他并没有像你我一样 想去哪儿就去哪儿的自由。 我们应该改变这种现状。 现在,传统观点认为, 我们应该使用驾驶员辅助系统, 然后不停改进它们, 总有一天,它们能够实现自动驾驶。 事实上我今天来就是想告诉你们, 这就跟 如果我努力练习弹跳, 有一天我就能飞翔一样不现实。 我们需要做点不同的东西。 我会跟你们介绍 自动驾驶系统和驾驶员辅助系统的 三个不同方面。 我先从自己的经历说起。 在2013年, 我们进行了第一次自动驾驶测试, 让普通人来操作。 算是普通人吧—— 他们是100名谷歌员工, 但他们没有参与开发这个项目。 我们把车给他们, 让他们在日常生活中使用。 但与真的自动驾驶汽车不同, 这一辆得加个星号上去: 他们得留多个心眼儿, 因为这只是一辆试验车。 我们虽然进行了很多测试, 但还是有风险。 我们对他们进行了两个小时的训练, 然后让他们进行实际操作, 然后我们得到了一些很好的反馈, 因为有人把产品带到现实中来了。 每个人都对它赞不绝口。 事实上,在第一天 有一个保时捷驾驶员进来跟我们说, “这实在是太无厘头了。 你们到底怎么想的?” 但最后,他说,“不单是我需要它, 每个人都需要有一辆, 大家的车技都太烂了。” 这番话就是我们的福音, 然后我们开始观察 人们在车里都在做什么, 真让人大开眼界。 我最喜欢的故事,是一位先生 低头看手机,发现手机快没电了, 然后他在车里这样转过身, 在背包里四处摸索着, 拿出他的笔记本电脑, 放到副驾驶座位上, 再转过身, 又摸了一通,拿出手机充电线, 理一下线,插进电脑里,连上手机。 棒极了,手机有电了。 而他那时正行驶在时速65英里的高速上 (约104公里每小时)。 能想象到吗?太难以置信了。 所以我们想了想,说, 这挺明显的对吧? 科技越来越发达, 驾驶员就不需要太负责任。 所以只是把车变得更加智能, 并没法让我们看到真正需要的成功。 我在这里要暂时说一点技术上的东西。 在这张图上,底部的线 代表着在不必要的时候 制动刹车发生的频率。 你可以忽略这条轴的大部分. 因为如果你在城里开车, 然后车时不时自己停下来。 你永远都不会买这辆车。 竖直的轴线表示车会 在你需要避免事故时 采取制动刹车的频率。 如果我们看左下角, 这是你们正在开的普通汽车。 它不会自动为你刹车, 也不至于刹车失灵, 但它无法为你避免事故。 如果我们把驾驶员辅助系统 装进车里, 比如说撞击缓冲刹车系统, 我们会导入一系列的科技, 也就是这条曲线, 它有了一些操作属性, 但也不会完全规避事故, 因为它没有这个能力。 但我们会在曲线上取某个点, 也许它可以避免一半 因驾驶员失误引起的事故。 挺赞的,对吧? 我们可以减少一半的交通事故。 这样每年在美国就有1万7千人 幸免于难。 但如果我们想要一辆自动驾驶汽车, 我们需要一条这样的曲线。 我们得在车里加装更多的传感器, 然后在这里挑某个操作点, 在这个点上基本 永远不会有事故发生。 多少还是会发生,但概率极低。 现在我们可以看看这里, 探讨一下是否有所增加, 我会提到比方说“80-20规则”, 而且很难再上升了。 但让我们暂时从另一个角度看一看。 我们看看这种科技应用的频率多高。 这个绿点表示驾驶员辅助系统。 调查发现人类驾驶员 因为自身错误导致的交通事故, 在美国是每10万英里(约16万公里) 发生一次。 对比之下,自动驾驶系统约在每秒 会自行做10次决定。 所以就数量级而言, 约是每英里(1.6公里)1000次。 如果你对比一下两者的差距, 就是10的八次方,对吧? 8个数量级, 这就像拿我跑步的速度 和光速比较, 即便我再刻苦训练, 也永远达不到光速。 所以这个跨度非常大。 最后,就是这个系统如何 处理不确定性。 那么这个行人可能会走到路上, 也可能不会。 我不确定,也没有任何算法能确定, 但对于驾驶员辅助系统来说, 这意味着它无法采取措施, 因为如果它在预期之外采取制动, 是完全不合适的。 但自动驾驶系统则会观察行人, 然后说我不知道他们要做什么, 于是减速,再仔细观察, 然后采取适当措施。 所以这就比驾驶员辅助系统 要安全得多, 那么以上的例子就 足以体现这两者的区别了。 现在我们再花点时间聊聊 车是如何观察环境的。 这是我们的车。 它从识别自己的位置开始, 通过将它的地图和 传感器数据进行叠加, 然后我们再加上它当时看到的东西, 所以在这里所有你能看到的紫色盒子 是路上的其他车辆, 旁边红色的物体则是一位骑单车的人, 如果你再仔细点看,在远处, 你能看到一些锥形路障。 这样我们就能知道汽车现在的位置了, 但我们还得再改善: 我们得预测将发生的事情。 这里右上角的小卡车正准备换到左道, 因为前面的路被封了, 所以它得驶离原车道。 能知道一辆小卡车的轨迹确实不错, 但我们真正需要的是 了解每个人的想法, 所以问题就变得十分复杂了。 了解这些之后, 我们就可以算出汽车该如何应对, 该跟随哪条线路, 要多快实现减速或者加速。 所有的这一切最终都会 变成跟随一条路径: 向左或还是右打方向盘, 踩刹车还是油门。 所有的一切最终都 简化成了两个数值, 那这能有多难呢? 在2009年我们刚开始测试的时候, 我们的系统看起来是这样的。 你能看到我们的车在中间, 路上还有其他盒子, 同时在高速上行驶着。 这辆车需要知道自己的位置 以及其他车辆的大概方位。 基本上就是一种几何的分析方式。 当我们开始在社区和 城市道路上行驶时, 问题又上升到了一个新的难度。 你能看到行人在我们面前穿梭, 还有汽车, 横纵交错, 还有红绿灯,人行横道。 相比之下问题变得极度复杂。 当你把这个问题解决后, 接下来汽车还得能应付建筑施工。 所以左边的锥形路障会 迫使汽车开到右边, 当然不仅需要避开施工区域, 它还得应付在其间走动的其他人。 当然,如果有人违规了, 有警察在那里, 汽车就得明白车上闪着灯 意味着这不仅仅是一辆车, 还有一位警官。 类似的,这里路边橘黄色的盒子, 是校车, 我们也得分开来处理。 当我们在路上时, 其他人会表达各种意图: 当骑单车的人举起他们的手臂, 这就意味着他们希望有车能 让给他们点空间 以便进行换道。 当路中间站着一位警官, 我们的车得明白这手势是要你停下来, 当他们示意我们可以走了, 我们才能继续。 我们达成这些目标, 是通过和其他车辆分享数据。 首先,最简单粗制的模型, 就是当一辆车看到建筑施工地带时, 告知另一辆车,让它驶上正确的车道 以避免麻烦。 但我们对此有更深的认识。 我们可以搜集车辆在一段时间内 看到的数据, 数以千计在路上的行人,骑单车的人, 以及其他车辆, 了解他们的外形, 再用之去推理其他车辆 以及其他行人的外形。 然后,更重要的是, 我们可以从中得出一个模型, 预测所有交通参与者的去向。 这里的黄色盒子是 我们面前过马路的行人。 这个蓝色盒子是个骑单车的人, 而且我们预测 他会一直保持在车辆右侧。 这里有个在路上骑单车的人, 我们知道他会沿着路一直骑下去。 这里有人右转了, 而在这里,有人会在我们面前调头, 我们可以预测这个行为并安全应对。 目前为止,对于我们见过的场景 都没什么问题, 但当然,你还会遇见很多 之前没见过的东西。 几个月前, 我们的车辆在通过Mountain View (硅谷地名)的时候, 就遇到了这样的情景。 这是个坐着电动轮椅的女士, 在路中央绕着圈追赶一只鸭子。 (笑声) 结果呢,在机动车驾驶管理处的手册里 没有一条告诉你该怎么做, 但我们的车辆却能灵活应对, 减速并安全通过。 我们应付的不只是鸭子, 看看这只飞过我们面前的鸟, 汽车也会对之做出处理。 这里还有一个骑车的, 估计除了在Mountain View, 其他地方很难见到。 当然,我们还得应付其他驾驶员, 甚至那些幼龄的。 注意右边,那个从货车上跳下来的人。 现在,注意左边绿盒子那辆车, 它决定在最后的时刻右转。 这里,当我们变道时,我们左边的车 也同样想变道。 还有这里,我们看到一辆车闯了红灯, 我们就先让它通过。 同样这里,骑单车的人也闯红灯了, 不出所料, 我们的车也能安全应对。 当然还有一些莫名其妙的人, 就像这家伙一样, 直接就从两辆自动驾驶汽车中窜出来。 你会想问,“你脑子是怎么想的?” (笑声) 我已经给你们看了大量的例子, 我快速地讲一下其中的一个案例。 我们现在看到的还是骑单车的人, 你们可能会发现在下面的视角, 我们还看不到那个人, 但车能看到:就是那里的小蓝盒子, 这来自于激光数据。 这并不是很容易理解, 那么我接下来要做的, 就是调出激光数据看一下, 如果你擅长分析激光数据,你能发现 曲线上的一些点, 就在那儿, 那个蓝色小盒子就是骑单车的人。 这会儿面对我们的还是红灯, 自行车道的灯已经变黄了, 如果你瞥一眼的话,就能看到了。 但是骑单车的人, 我们看到他准备穿过这个十字路口, 我们的灯已经变绿, 他的方向也变红了, 我们预期到这辆单车将会横穿马路。 但不幸的是, 我们旁边的其他司机并没有注意到。 他们开始踩油门, 不过幸运的是, 骑单车的人及时避开了, 然后平安地穿过了十字路口。 之后我们才又继续前进。 正如你们所见, 我们已取得了一些激动人心的成就, 此时我们深信 这项技术将会进入市场。 我们每天用虚拟器做 3百万英里的测试, 所以你就能够想象到 我们的车辆获得了多少经验。 我们期待这项技术能在道路上使用, 并且认为正确的选择是自动驾驶, 而非驾驶员辅助系统, 因为情况已经刻不容缓了。 就在我演讲的时间段内, 在美国的公路上已经有34人丧生。 我们多久能实现这个目标呢? 嗯,很难说, 因为这是个很复杂的问题, 这两个是我的儿子。 大的11岁,也就是说在四年半后, 他就能去考驾照了。 我和我的团队承诺 尽量不让他去考(已经不需要了)。 谢谢。 (笑声)(掌声) 克利斯·安德森(CA): 克里斯,我有个问题要问你。 克里斯·厄姆森(CU):问吧。 CA:显而易见, 你们的车有着让人惊奇的大脑。 在驾驶辅助和无人驾驶这场辩论上—— 我是说,现在就有一场真正的辩论。 一些公司,例如,特斯拉, 正在走驾驶辅助的路线。 而你所说的, 就是这将是个没前途的死胡同, 因为你不能指望在这方面不断提高 就会在某个时候实现无人驾驶, 然后有驾驶员说 “这已经挺安全的了”, 然后转身去后座, 不幸就发生了。 CU:对,你说得对,这并不是说 驾驶员辅助系统作用不大。 它能在这个过渡阶段拯救很多生命, 但为了抓住这一变革性的机会, 能帮助像史蒂夫这样的人行动自如, 为了终结安全事故, 为了有机会改变我们的城市, 解决停车问题, 摆脱我们称为停车场的城市大坑, 这是唯一的办法了。 CA:我们会带着浓厚的兴趣 关注你们的进展的。 谢谢你,克里斯。 CU:谢谢。(掌声)