我將帶領大家跟著羅塞塔號太空船 進行史詩般的探險。 護送這個探測器在一顆彗星上登陸, 一直是我這過去兩年來的熱情所在。 為此, 我需要向大家解釋一些關於太陽系起源的東西。 讓我們回到45億年前, 有個充滿氣體和灰塵的雲團。 在這個雲團的中心, 我們的太陽在那裡形成並燃燒。 同時,今日所知的行星、彗星和小行星跟著形成。 根據理論,接下來, 隨著地球形成並逐漸冷卻, 大量彗星撞擊地球,並帶來了水。 它們可能還給地球帶來了複雜的有機物。 正是這些有機物引發了生命的出現。 這過程猶如必須拼湊一幅250片的拼圖, 而非2000片。 之後,像木星和土星之類的大行星, 它們尚未在今日所在位置, 透過彼此重力吸引, 它們將整個內太陽系空間清掃乾淨。 至於今日所知之彗星, 最後則落入所謂柯伊伯帶之內。 這是一條位於海王星軌道之外的天體聚集帶。 有時這些天體會相互碰撞, 導致引力偏向, 此時,木星的引力會將它們拉回太陽系。 然後,它們就變成我們在天空中所見的彗星。 重要的一點是,在此期間, 在這45億年間, 這些彗星一直安坐於太陽系之外, 並且從沒變過—— 就像沉底,凍結版的太陽系。 在天空中,它們看起來像這樣。 我們靠慧尾認識它們, 慧尾其實有兩條。 一條是塵埃尾,因太陽風吹拂而生。 另一條是離子尾,含帶電粒子, 其方向遵循太陽系內磁場方向。 這是慧髮, 然後這是慧核,小到看不見, 但是別忘記,就羅塞塔號而言, 太空船就在中央那個像素裡。 我們距離彗星只有20 、30、 40公里。 其重要性何在? 彗星中含有太陽系形成時的原始物質, 因此,其成份是我們研究地球 及生命起源時期的絕佳對象。 彗星還疑似 帶來了那些引發生命起源的元素。 1983年,歐洲太空總署(ESA) 開啟了長期的地平線2000計畫, 其中包含一塊重要基石,即彗星探索任務。 同時期,為了一項小型的彗星探索任務, 畫面上的喬托號發射升空, 喬托號於1986年飛掠過哈雷彗星, 前後跟著一大群其他太空船。 通過那次任務的結果,一件事變得很清楚, 那就是彗星是用來研究太陽系的理想天體。 因此,1993年批准了羅塞塔號任務, 一開始,它應該是在2003年發射的, 卻因亞利安火箭出現問題而取消。 不過,我們的公關部門,充滿熱情, 他們早已製作了1000枚代爾夫特藍陶盤, 並印上了那些錯誤的彗星名字。 因此從那以後我就不需再買任何瓷器。 這也算是其正向的一面。 (笑聲) 解決了所有問題之後, 羅塞塔號於2004年離開地球, 飛向重新選定的丘留莫夫·格拉西緬科彗星。 這顆彗星是特別挑選的, 因為首先,你必須能到得了, 其次,它必須沒在太陽系長期待過。 這顆特別的彗星從1959年開始來到太陽系。 那是它受木星偏向後第一次來到太陽系, 且靠近太陽近到足夠出現變化。 所以這是一顆非常新的彗星。 羅塞塔號取得了好些歷史性的第一。 它是首顆環繞彗星的人造衛星, 並跟著慧星周遊整個太陽系—— 八月將到達近日點, 然後離開太陽系。 這是首次有太空船在彗星上登陸。 在環繞這顆彗星飛行時,我們實際用到一項 其他太空船罕用的技術。 通常,你望向天空,就能知道你的方位和座標。 但是為了環繞慧星,那還不夠。 我們要靠彗星上的地標來導航。 我們辨別一些特徵——卵石、坑洞—— 這樣才能知道我們相對於彗星的位置。 當然,這也是使用太陽能電池的太空船 第一次飛越木星的軌道。 這聽起來似乎是項英雄事蹟,但事實不完全如此, 理由是那時候歐洲還沒有 放射性同位素熱電源的技術可用, 所以當時別無選擇。 不過這些太陽能電池板很大。 這是它的一隻翅膀,而這些是人, 沒有特意挑矮子。 他們是跟你我一樣的正常人。 (笑聲) 我們有兩隻翅膀,共65平方公尺。 當然,隨後當我們到達這顆彗星時, 你會發現,讓這65平方公尺的巨帆 向一個正在釋放氣體的天體靠近並不是很方便的設計。 我們是怎麼到達這顆彗星呢? 因為我們須要到一個十分遙遠的地方 去完成羅塞塔號的 科學任務——距離為地球到太陽的4倍—— 而且須要以一個遠超過我們用燃料 所能達到的速度飛行。 如果要達到這速度, 我們得攜帶六倍於太空船本身重量的燃料。 所以你會怎麼做? 你會採用重力場飛掠法,即彈弓原理, 以非常低的高度,飛掠行星, 大概幾千公里高, 這樣你就能免費獲得那顆行星的公轉速度。 我們這樣做了好多次。 我們利用過地球、火星 ,然後又第二次使用地球, 我們還飛掠了兩顆小行星,司琴星,以及斯坦斯。 然後到了2011年,我們已經距離太陽夠遠了, 如果這時太空船遇到什麼問題, 事實上,我們再也沒辦法拯救它了, 所以我們進入冬眠狀態。 除了一個時鐘外,所有其他儀器都關掉了。 畫面上白線為太空船的運動軌跡, 可看出其工作原理。 你看,從一開始出發的這個圓, 沿著白線,我們看到軌跡變成越來越狹長的橢圓, 2014年5月,我們終於靠近彗星。 然後我們開始進行會合動作。 在途中,我們飛經地球 並拍了一些照片以測試我們的相機。 這是月球從地平線上升的景像, 這是我們現在所稱的自拍, 順便說一下,那個時候“自拍” 這個詞還不存在。(笑聲) 這是在火星上方, 由彗星紅外與可見光分析儀 (CIVA) 相機所拍攝。 那是登陸器上的一台相機, 從太陽能電池板下方望出的景像, 你能看到火星及遠處的太陽能電池板。 當我們在2014年1月從冬眠中甦醒後, 5月份我們到達距離慧星 200萬公里的地方。 然而,這時太空船的速度太快了。 我們的時速比這顆彗星快2800 公里, 因此我們需要刹一刹車。 我們作了8次的減速動作, 你看這圖,其中的一些減速幅度真的很大。 我們的第一次減速需要將時速降低數百公里, 這個過程實際花了7個小時, 並消耗了218公斤燃料, 這7小時令人心驚膽戰,因為在2007年, 羅塞塔號的推進系統出現了漏氣現象, 使得我們必須關掉一處分路, 因此推進系統實際所處的工作壓力 並不符合原始設計條件。 然後我們到達這顆彗星的附近, 這是我們看到的第一批照片。 這顆彗星真實的自轉週期是12.5小时, 所以這是加快影片, 但是你會理解我們的飛行動力學工程師在想什麼, 這可不是一個容易登陸的東西。 我們原本希望它像某種馬鈴薯形狀一樣 可以輕易的登陸在上面。 我們還有一種希望:也許它是平坦的。 不,以上兩種都不是。(笑聲) 因此,當下顯然別無選擇: 我們得儘可能詳細繪製這個天體的地圖, 因為我們必須找到一塊直徑500公尺的平地。 為什麼是500公尺? 這是我們探測器登陸時的誤差。 我們經歷此過程,繪製出彗星表面的地圖。 我們使用一種叫做照相測斜術的技術。 作法是利用太陽拋下的陰影。 你在這裡看到一塊安坐於彗星表面的岩石, 陽光從上面照下來。 透過陰影,我們用大腦, 可以立刻大致判斷出這塊岩石的形狀。 這過程可以用電腦寫成程式, 然後將範圍涵蓋整顆彗星, 你就可以繪製彗星地圖。 為此,我們從8月份開始以一種特殊的軌跡飛行。 首先,在100公里距離的地方, 沿一個邊長為100公里的三角形飛行, 然後將距離及邊長改為50公里再重複整個過程。 此時,我們已從各種角度觀察過這顆彗星, 可利用本技術繪製彗星全圖。 現在,到了選擇登陸地點的時候了。 這整個必要過程,從繪製彗星地圖, 到實際找到最終登陸地點,花費60天。 我們並沒有更多的時間。 給你們一個參考,平均一次火星任務 需要上百位科學家花數年的時間開會 才能找到一個登陸地點。 我們只有60天,就那麼多了。 我們最終選定了一個登陸點, 並且為羅塞塔號準備好發射菲萊號的指令。 其登陸方式為羅塞塔號得處在太空中的正確位置, 並且瞄準這顆彗星,因為登陸器是被動的。 隨後推出登陸器,使其飛向彗星。 羅塞塔號得轉個身, 讓其相機正對著菲萊號飛離過程, 及維持通訊。 整個登陸過程花費7個小時。 簡單的計算一下: 如果羅塞塔號的速度誤差是每秒1公分, 7個小時就是25000秒, 那就意味著登陸器登陸彗星時的誤差是252公尺。 因此羅塞塔號的速度誤差 必須小於每秒1公分, 其太空中的位置誤差必須小於100公尺 此時它距離地球5億公里遠。 那可不容易。 讓我快速帶領大家認識一些科學和儀器。 我不會講太多儀器細節,以免大家厭煩, 但是它什麼東西都有。 我們可以聞氣體,可以測塵粒, 測量其形狀及成份, 有磁力儀,等等一切。 這是一部儀器所測到的氣體密度結果 位置在羅塞塔號附近, 所以這是從彗星上釋放出來的氣體。 這下面的圖是去年9月份的結果。 可看到一個長期的變化,這變化本身並不稀奇, 但是你看那些尖峰。 這就是彗星上的一天。 你可以看到太陽影響氣體蒸發的效果, 以及彗星本身旋轉的事實。 所以顯然有一處地點, 很多東西都出自那裡, 它受太陽加熱,然後在背面冷卻。 我們可以看看這裡的密度差異。 這些是我們已經測量到的 氣體和有機化合物。 這是一張令人印象深刻的清單, 以後還會有更多更多的東西出現在上面, 因為還會作更多測量。 其實,目前在休斯頓那邊就有一場研討會, 許多結果正在發表。 還有,我們也測量塵粒。 現在對你們來說可能毫不起眼, 但是當科學家們看到這個的時候都非常激動。 畫面有兩顆塵粒: 右邊的塵粒它們叫伯里斯,他們用鉭去撞擊它, 以便能夠分析它。 我們發現了鈉和鎂。 這顯示出太陽系形成時期, 這兩種物質的濃度。 所以我們學到行星形成時, 存在哪些物質。 當然,重要設備之一就是相機。 這是羅塞塔號上的一部相機——OSIRIS (光學、光譜與紅外遙測攝影系統) 相機——所拍攝, 其實這曾是《科學》雜誌 今年1月23日那一期的封面。 沒有人想到這天體會看來如此。 大卵石,岩石——如果非要和其他地方作比較, 它看起來更像是優勝美地的半圓丘。 我們還看到了這樣的東西: 沙丘,及右手邊, 看起來好像受風吹動的影子。 目前我們知道火星上有這些,但是這顆彗星沒有大氣, 所以要產生一個受風吹動的影子是有點困難的。 這可能是局部氣體釋放, 有什麼東西上升然後落下來。 我們還不清楚,所以還有很多需要調查。 這裡,你看到同一地點的兩張照片。 左手邊這張,你看中間有一個坑。 右手邊這張,如果你仔細看, 有三股氣流從那個坑的底部噴出。 這就是這顆彗星的活動。 顯然,這些坑的底部就是活動區域, 也是物質蒸發到太空的地方。 這顆彗星的頸部有一條非常引人好奇的裂縫。 你可以從右手邊照片看到。 它有1公里長,2.5公尺寬。 事實上有些人暗示, 隨著我們靠近太陽, 這顆彗星可能一分為二, 這時我們將必須選擇, 究竟要跟隨哪一半彗星? 這是(菲萊號)登陸器——一樣的,攜帶了很多儀器, 除了地面錘子和鑽子等,幾乎可與羅塞塔號相媲美。 而與羅塞塔號攜帶幾乎一樣的儀器是因為我們想比較 來自太空和來自彗星上的兩種觀察結果有何不同。 這些稱為“地面真值調查”。 這些是登陸下降照片 由OSIRIS相機拍攝。 你看登陸器離羅塞塔號越來越遠。 右上角,是登陸器在60公尺高拍的照片, 彗星表面60公尺上空。 那個大卵石直徑約10米。 這是我們登陸彗星前所拍的最後一張照片。 這裡,我們從一個不同的視角將整個過程再看一遍, 從圖左下角到中間有三幅放大照, 顯示登陸器飛過彗星表面的情景。 然後,在頂部有登陸之前和登陸之後的對比照片。 其中,登陸後的照片有個問題就是找不到登陸器。 但是你如果仔細觀察這張照片的右手邊, 我們看到登陸器還在,只是它彈走了。 它又離開了彗星表面。 現在,有點滑稽的是 本來在羅塞塔號的設計中, 它會攜帶一個能反彈的登陸器。 但是因為成本太高所以這一方案遭捨棄。 現在,我們忘了這件事,但是登陸器還記得。 (笑聲) 第一次反彈期間,在磁力儀上, 你可以看到來自X、Y、Z三個座標軸的資料。 半途中,你可以看到一條紅線。 在紅線處,有發生改變。 發生了什麼?很顯然在第一次反彈時 登陸器的一條腿在某處碰到一個坑的邊緣, 而登陸器的旋轉速度產生改變。 所以我們能落在目前所在位置, 是非常幸運的。 這是羅塞塔號拍的標誌性圖片之一。 那是一個人造物體,登陸器的腿, 站在一顆彗星上。 對我來說,這是所見太空科學照片中最棒的一張。 (掌聲) 我們仍然需要去做的一件事是實際找到這個登陸器。 藍色區域是我們認為它應在的位置。 我們還沒能找到它,但是搜索仍在繼續, 同時我們也在努力讓登陸器重新工作。 我們每天用心監聽, 我們希望從現在到4月份的某個時候, 這個登陸器會再一次醒來。 我們在這顆彗星上的發現有: 這個東西可以在水上漂浮。 其密度為水的一半。 因此它看起來雖然像一個很大的岩石, 但實際上不是。 去年6、7、8月我們看到 其活躍性提高了4倍。 當我們靠近太陽時, 每秒將會有100公斤的物質離開這顆彗星: 氣體、灰塵等。 1天的話就是1億公斤。 最後,結束前,要提登陸那一天。 我將永生難忘——太瘋狂了, 在德國有250名電視臺工作人員在場。 當BBC採訪我時, 旁邊還有一位電視臺工作人員,整天跟著我, 也同時在拍攝我的訪問過程, 那種狀況持續了一整天。 探索頻道的工作人員 在離開控制室時找到了我, 他們問了個好問題, 我竟哭了起來,我現在仍然能感受到這心情。 此後的1個半月裡, 每次想到登陸日我都會熱淚盈眶, 那種情緒仍留存在我心裡。 我想用這張彗星照片來結束今天的演講。 謝謝。 (掌聲)