Итак, все слышали о CRISPR? Я удивлюсь, если нет. Это технология редактирования генома, и она настолько многогранна и противоречива, что вокруг неё вспыхивают самые разные дискуссии. Стоит ли воскрешать шерстистых мамонтов? Стоит ли изменять человеческий эмбрион? И моя любимая: можно ли оправдать уничтожение целого вида, который мы считаем вредным, стереть его с лица земли, используя эту технологию? Подобные науки развиваются быстрее, чем механизмы, которые регулируют их использование. Поэтому последние шесть лет я считаю своей личной миссией убедиться, что как можно больше людей понимают смысл подобных технологий. Итак, вокруг CRISPR поднялась настоящая шумиха в прессе, и два слова, которые звучат чаще всего, — это «легко» и «дёшево». Поэтому я хочу глубже осветить эту тему и рассмотреть некоторые мифы и факты о CRISPR. Если вы редактируете геном с помощью CRISPR, первое, что вам нужно сделать, — повредить ДНК. А именно произвести двунитевой разрыв в двойной спирали ДНК. От этого запускаются процессы восстановления клеток, а затем мы заставляем эти процессы редактировать геном так, как хотим мы, а не так, как заведено природой. Вот как это работает. Система состоит из двух частей. У нас есть белок Cas9 и так называемая РНК-гид. Мне нравится представлять это как управляемую ракету. Итак, Cas9 — я люблю всё одушевлять, — Cas9 — это что-то вроде Пакмана, который жуёт ДНК, а РНК-гид — это поводок, который не пускает его к геному, пока не найдёт то место, где она с ним совпадает. Сочетание этих двух элементов и есть CRISPR. Мы позаимствовали идею у древней иммунной системы бактерий. Самое потрясающее в этом всём то, что РНК-гид, всего 20 букв, направляет систему в цель. Это легко спроектировать, и это действительно дёшево. РНК-гид — это единственная изменяемая часть системы; всё остальное не меняется. Именно поэтому эта система такая мощная и простая в использовании. РНК-гид и белок Cas9 вместе путешествуют вдоль генома, и когда РНК-гид находит совпадение, она встраиваетcя между нитями двойной спирали, отрывает их друг от друга, белок Cas9 рассекает геном, и вдруг мы видим, что клетка в панике, поскольку её ДНК повреждена. Что она делает? Она вызывает «аварийную службу». Есть два пути «починки» ДНК. Первый: клетка берёт концы ДНК и сталкивает их. Это не очень эффективный способ, поскольку может потеряться основание ДНК или добавиться новое. Это подходит, если вам нужно, скажем, выключить ген, но для редактирования ДНК нужен другой способ. Второй путь «починки» куда интереснее. Он состоит в том, что клетка берёт гомологичный фрагмент ДНК. Заметим, что у людей и у всех диплоидных организмов есть копии генома от матери и от отца, и если одна повреждена, клетка использует вторую хромосому для починки. Вот как это происходит. Клетка починила ДНК, и геном снова в безопасности. Мы можем обмануть клетку, дав ей «неродной» фрагмент ДНК, соответствующий нужной хромосоме по краям, но отличающийся в середине. И в середину можно поместить что угодно — клетка не распознает подмену. Можно поменять букву, убрать несколько букв, но, что самое важное, можно поместить туда новую ДНК, как в Троянского коня. CRISPR будет поразительным, с точки зрения того, сколько научных открытий будет сделано благодаря ему. Его отличает настраиваемая система наведения. Мы ведь годами запихивали ДНК в живые организмы, верно? Однако с этой системой наведения мы можем поместить ДНК именно туда, куда нужно. Но дело в том, что много говорится о том, что CRISPR — это дёшево и просто. Я руковожу общественной лабораторией, и мне начали приходить письма, в которых люди спрашивают: «Можно прийти к вам на день открытых дверей и отредактировать свой геном с помощью CRISPR?» (Смех) Нет, правда. Я говорю: «Нет, нельзя». (Смех) «Но я слышал, что это дёшево. Что это просто». Давайте разберёмся, насколько это так. Дёшево ли это? Да — в сравнении с другими технологиями. CRISPR позволит снизить среднюю стоимость материалов для эксперимента с тысяч долларов до сотен и сэкономит много времени: то, что занимало недели, займёт дни. Это всё здорово. Вам всё равно нужна лаборатория для работы; у вас не получится ничего стóящего вне профессиональной лаборатории. Не слушайте тех, кто говорит, что такие эксперименты можно проводить у себя на кухне. Это действительно сложная работа. Не говоря уже о том, что идёт борьба за патент. Даже если вы что-то изобретёте, институт Броада и университет Беркли оспаривают CRISPR друг у друга. За этим очень интересно наблюдать, потому что они обвиняют друг друга в мошенничестве, учёные пытаются доказать своё первенство с помощью записей в лабораторных журналах. И это будет продолжаться ещё долго. А когда кончится, вам придётся платить кому-то огромные суммы за лицензию, чтобы использовать CRISPR. Так дешёво ли это? Да, если вы занимаетесь фундаментальными исследованиями в лаборатории. Как насчёт «просто»? Давайте разберёмся с этим. Дьявол всегда в деталях. Мы не так уж много знаем о клетках. Они для нас всё ещё «чёрные ящики». Например, мы не знаем, почему некоторые РНК-гиды работают, а некоторые — нет. Мы не знаем, почему одни клетки чинят ДНК одним способом, а другие — другим. И кроме того, отдельная проблема в том, чтобы поместить эту систему внутрь клетки. В чашке Петри это несложно, но сделать это с живым организмом куда сложнее. Хорошо, если вы используете кровь или костный мозг, — сейчас много исследований, посвящённых этому. Например, история о девочке, которую вылечили от лейкемии, отредактировав клетки её крови технологией, которая предшествовала CRISPR. Именно в этом направлении ведётся большинство исследований. Но сейчас, если вы хотите забраться в живой организм, вам, скорее всего, придётся использовать вирус. Вы берёте вирус, помещаете CRISPR внутрь и заражаете этим вирусом клетку. Проблема в том, что, когда клетка заражена, мы не знаем, какие у этого будут последствия. К тому же у CRISPR есть побочные эффекты, их немного, но они есть. Как они проявятся со временем? Все эти вопросы очень важны, и есть учёные, которые ими занимаются, и рано или поздно они будут решены. Но это ни в коем случае не что-то, чем может пользоваться каждый. Легко ли это? Если вы провели несколько лет, разбираясь с вашим конкретным случаем, то да, легко. Другая проблема в том, что мы не так уж много знаем о том, как добиться нужных нам изменений, редактируя определённые участки генома. Мы ещё очень не скоро сможем, например, вывести свинью с крыльями. Или хотя бы с пятью ногами — меня бы и пятая нога устроила. Было бы здорово, да? Но на самом деле CRISPR используют тысячи и тысячи учёных для решения очень важных задач, например, моделирования заболеваний у животных, или выведения редких химических соединений в промышленных масштабах, или даже просто фундаментальных исследований генома. Это то, что всем нужно знать о CRISPR, и мне не нравится, что более эффектные стороны технологии заслоняют самое важное. Огромное количество учёных проделали огромную работу над CRISPR, и мне кажется интересным то, что наше общество поддерживает этих учёных. Подумайте об этом. У нас есть инфраструктура, которая позволяет определённым людям проводить всё своё время за исследованиями. В некотором роде мы все — изобретатели CRISPR, и, я бы сказала, пастыри CRISPR. На всех нас лежит ответственность. Поэтому я призываю всех вас узнавать как можно больше о подобных технологиях, поскольку только так мы сможем управлять развитием этих технологий, их использованием, и убедиться, что они работают на благо — благо планеты и человечества. Спасибо. (Аплодисменты)