我想我要談一下大自然如何製造材料。 我帶來了一個鮑魚殼。 這個鮑魚殼是一個生物複合材料, 它百分之98的質量是由碳酸鈣組成 另外百分之二是蛋白質。 但是比起其他在同個地方成長的物質﹐ 它卻硬了三千倍。 而且很多人或許會利用類似齙魚殼的東西, 像是粉筆。 我對大自然如何製造材料感到著迷﹐ 對於如此精巧的工作﹐ 過程中有許多機密。 部份的原因是因為這些材料 雖然在結構上是肉眼可見的, 但卻是在奈米尺度下形成。 它們是在奈米尺度下形成的, 而且它們利用基因編碼的蛋白質 讓它們能夠製造出這些如此精巧的結構。 所以讓我感到非常著迷的是 如果你可以將生命賦予給 無生命結構, 像是電池和太陽能電池? 又或他們擁有些像鮑魚殼一樣 的能力, 就是說可以 在室溫及室壓下 利用無毒化學物質, 再加上無毒材料 來製造非常精巧的結構。 這是我正在想的願景。 如果可以在培養皿內製造電池會是怎樣的呢? 又或如果你可以給電池基因訊息 讓它可以隨著時間 表現更好, 而且又是用環保的方法﹖ 所以﹐講回這個鮑魚殼, 除了是奈米結構, 另外一個有趣的是 當一公和一母的鮑魚相會時, 他們會把「如何建造出這種精巧材料」的 基因訊息傳遞下去。 這就是如何在室溫室壓下利用 無毒物質生產。」 在矽藻上也是一樣,就是這種玻璃般的結構。 每一次矽藻分裂, 他們就會把這樣的基因訊息傳遞下去: 「這是如何在海裡製造玻璃。 完全是奈米尺度的。 而且你可以一而再、再而三地做相同的事情」 所以如果你可以對太陽能電池或是電池 做同樣的事情? 我會說我最喜歡的生物材料就是我的四歲小孩。 任何一個有過或認識小朋友的人都知道 他們是非常複雜的個體。 所以如果你想要說服他們 去做他們不想要做的事情﹐是非常困難的。 所以當我們在思考未來的科技, 我們會想利用細菌和病毒 那樣簡單的生物體。 你能不能說服它們用新的方法 讓它們能夠建造出一個 對我有用的結構? 而且,我們思考著有關未來的科技。 我們從地球的開端講起。 基本上,地球經過了幾十億年 才有生命。 且很快的,它們變成多細胞生物, 它們會複製﹐它們可以用光合作用 來取得它們能量的來源。 但直到五千萬年前-- 在寒武紀地質時期-- 生物才從海洋移到陸地。 在那之前,生物都是柔軟蓬鬆的結構。 也是在這個時期 環境中的鈣、鐵和矽 逐漸增加。 然後生物們學會製造出硬的材料。 那就是我想要做的-- 說服生物學界 與週期表上的其他元素合作。 現在如果你看看生物學中, 有很多像是DNA和抗體 還有蛋白質和核糖體這些你有聽過的東西 都已經是奈米結構的。 所以自然界早已經給了我們 在奈米尺度下如此精巧的結構。 如果我們能夠駕馭它們 說服它們不要當抗體 就像HIV那樣﹖ 或是如果我們可以說服它們 為我們製造太陽能電池﹖ 所以這是一些例子:這些自然的貝殼。 這是天然的生物材料。 這個鮑魚殼,如果你打裂它, 你可以看到它是奈米結構的。 而矽藻是由二氧化矽組成 且它們是超磁細菌 製造出微小、單一結構磁鐵來幫助導航。 共同點是 這些材料都是在奈米尺度上建造的, 且他們都有DNA序列 可以轉譯成蛋白質序列 給它們製造這些 美好構造的藍圖。 現在,回到齙魚殼, 鮑魚因為有這些蛋白質才能製造這個殼。 這些蛋白質帶有大量負電。 且它們可以在環境中吸引鈣, 鋪下一層鈣然後碳酸化、加鈣、再碳酸化。 它擁有氨基酸的化學序列, 說著:「這是如何建造結構。 這是DNA序列、這是蛋白質序列 才能完成這件事。」 所以有趣的是,如果你可以選擇任何一種材料 或是元素週期表上的任何一個元素, 然後找到它對應的DNA序列, 將它轉譯成相對的蛋白質序列 來建造一種結構,但不是建造鮑魚殼-- 透過大自然來建造出一個 大自然還沒有機會建造的東西。 還有這是個元素週期表。 我超愛元素週期表的。 每年MIT進來的大一新生 我都會給他們一張元素週期表在上面寫著: 「歡迎來到MIT。現在你在你的元素中了。」 然後你把它翻過來就是氨基酸 以及它們在不同酸鹼度時的不同電荷。 所以我給了好幾千人這樣的表。 我知道它上面寫著是MIT﹐而這裡是加州理工學院, 但我這有多出來的表﹐如果有人想要的話。 且我很幸運的 今年歐巴馬總統來MIT參觀的時候 參觀到我的實驗室, 而我真的很想要給他一張元素週期表。 所以我熬夜跟我老公討論: 「我要如何給歐巴馬總統一張元素週期表呢?」 如果他說:「喔!我已經有一張了。」 或是「我已經背起來了」的話那我該怎麼辦? 所以他來到了我的實驗室 到處晃晃 -- 那是一個很棒的拜訪。 而之後我跟他說: 「總統,我想要給你這張元素週期表, 以備你在處於困境時會需要計算分子量。」 而且我覺得比起分子質量 分子量聽起來比較不會有那麼書呆子的感覺。 然後他看了一下 接著說﹐ 「謝謝你。我會週期性地去看它。」 (笑聲) (掌聲) 而之後他在一個乾淨能源的演講中 把它拿出來說: 「MIT那邊的人會分發元素週期表。」 所以基本上我沒有跟你們說的是 大約五億年前,生物體開始製造材料, 但他們花了大約五千萬年才擅長製造材料。 他們花了大約五千萬年 才學會如何完美地製造出鮑魚殼。 而且那樣是很難推銷給研究生的。 「我有一個很棒的方案 -- 要花五千萬年的。」 所以我們需要發展出一個 可以更快做到的方法。 所以我們利用病毒, 一個叫做M13的無毒噬菌體, 它們的工作是感染細菌。 它有很簡單的DNA結構, 讓你可以在裡面複製和貼上 新加的DNA序列。 這麼做可以讓病毒 表現隨機蛋白質序列。 這是非常簡單的生化技術。 而且基本上可以重複幾億次。 所以你可以進到幾億種 基因序列相同的病毒中, 它們之間唯一不同的在於它們尖端上的 一個序列 轉譯出一個蛋白質。 現在如果你拿這幾億種病毒, 把它們放進一滴液體中, 你可以迫使他們跟週期表上的任何元素互動。 透過選擇性進化, 你可以在這幾億種病毒中找到一株能做到你想要它做的事的病毒, 像是會製造電池或是生產太陽能電池的病毒。 所以基本上,病毒不能自行複製,他們需要有寄主才行。 當你找到你要的那株病毒, 你可以感染細菌, 你就可以得到幾千幾萬的 相同序列的複製品。 還有生物學上另一個有趣的地方 就是生物可以給你非常精巧的結構 且帶有好的鏈接效應。 這些病毒是又長又瘦的, 且我們可以讓它們表現出 可用來生產電池 像半導體或其他類似材料的能力。 這是一個在我們實驗室長出來的高性能電池。 我們製造出能夠撿起奈米碳管的病毒。 就是說病毒的一部份可以抓住奈米碳管, 另外一部份有一個序列 讓它們能夠長出電池電極材料。 然後它會自己跟自己連成一個電流集電極。 透過選擇性進化, 我們從一株可以致造不怎麼樣的電池的病毒 進步到一個可以製造好電池的病毒 再到一個破紀錄、高性能電池的病毒, 且這都是在室溫下達成的,基本上就是在實驗桌上做出來的。 這個電池到白宮參加了一個記者招待會。 我把它帶來這裡。 你可以在這個盒子裡看到--正在照亮這個LED。 如果我們可以有規模的做, 你可以用這電池 來驅動你的普銳斯, 這是我的夢想:可以開一臺病毒驅動的車。 但基本上, 你可以從幾億種病毒裡面挑出一株。 你可以大量放大它。 基本上,你可以在實驗室裡放大。 然後你讓它自己組裝 成為一個類似電池的結構。 我們可以利用催化劑來做到。 就像是利用光能 分解水分子。 我們目前正在做的是 製造出一株病毒﹐讓可以吸收染料的分子們在 它表面上排排站 作用像是個接收器, 這樣就能將能量轉移到病毒全身。 然後我們給它第二段基因, 讓它能夠長出無機材料, 可以用來將水分解成 氧氣和氫氣, 可以作為乾淨能源。 我今天帶來了一個樣本。 我的學生跟我保證這個樣本是能運作的。 這些是病毒組裝的奈米電線。 當光照設在上面的時候,你可以看到這些氣泡。 在這個例子中,你看到的是氧氣氣泡。 基本上利用控制基因, 你可以控制多種材料來改善你的器具效能。 最後一個例子是太陽能電池。 你也可以對太陽能電池這麼做。 我們可以製造 可以拿起奈米碳管的病毒, 然後在周圍形成二氧外鈦, 就可以用在器具中來傳遞電子。 我們發現,透過基因工程, 我們真的可以增加 這些太陽能電池的效能 讓這類染色敏感的系統 達到新的境界。 我也帶來了一個這樣的東西, 演講完畢後你們可以到外面玩一玩。 這是個以病毒為建立基礎的太陽能電池。 透過演化和挑選, 我們將一個百分之八效能的太陽能電池 增加到百分之11效能。 所以我希望我已經說服了你們, 關於大自然如何製造材料﹐ 有很多很棒、很有趣的事情等著我們去學習。 然後再進一步的, 看你們是否可以用強迫的方式, 或是利用大自然製造材料的方法 來製造出一些大自然還沒想到要去做的東西。 謝謝。