[Script Info] Title: [Events] Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text Dialogue: 0,0:00:00.00,0:00:00.69,Default,,0000,0000,0000,, Dialogue: 0,0:00:00.69,0:00:03.68,Default,,0000,0000,0000,,Let's figure out the oxidation\Nstates for some more Dialogue: 0,0:00:03.68,0:00:05.71,Default,,0000,0000,0000,,constituent atoms\Nand molecules. Dialogue: 0,0:00:05.71,0:00:13.13,Default,,0000,0000,0000,,So let's say I had\Nmagnesium oxide. Dialogue: 0,0:00:13.13,0:00:14.56,Default,,0000,0000,0000,,MgO. Dialogue: 0,0:00:14.56,0:00:17.06,Default,,0000,0000,0000,,I'll do oxygen in a\Ndifferent color. Dialogue: 0,0:00:17.06,0:00:18.89,Default,,0000,0000,0000,,So what are going to be their\Noxidation states? Dialogue: 0,0:00:18.89,0:00:20.55,Default,,0000,0000,0000,,And you might know this already,\Nbut let's look at the Dialogue: 0,0:00:20.55,0:00:22.79,Default,,0000,0000,0000,,periodic table, because\Nit never hurts to get Dialogue: 0,0:00:22.79,0:00:23.48,Default,,0000,0000,0000,,familiar with it. Dialogue: 0,0:00:23.48,0:00:25.55,Default,,0000,0000,0000,,So we have magnesium. Dialogue: 0,0:00:25.55,0:00:27.72,Default,,0000,0000,0000,,Magnesium has two valance\Nelectrons. Dialogue: 0,0:00:27.72,0:00:29.24,Default,,0000,0000,0000,,It's a Group 2 element. Dialogue: 0,0:00:29.24,0:00:32.56,Default,,0000,0000,0000,,It would love to lose\Nthose two electrons. Dialogue: 0,0:00:32.56,0:00:34.62,Default,,0000,0000,0000,,Oxygen, we already know,\Nis one of the most Dialogue: 0,0:00:34.62,0:00:38.99,Default,,0000,0000,0000,,electronegative atoms. It's so\Nelectronegative that oxidized Dialogue: 0,0:00:38.99,0:00:42.51,Default,,0000,0000,0000,,has essentially been\Nnamed after them. Dialogue: 0,0:00:42.51,0:00:45.63,Default,,0000,0000,0000,,And we know that oxygen loves\Nto gain two electrons. Dialogue: 0,0:00:45.63,0:00:47.49,Default,,0000,0000,0000,,So this is kind of a marriage\Nmade in heaven. Dialogue: 0,0:00:47.49,0:00:50.76,Default,,0000,0000,0000,,This guy wants to lose two\Nelectrons and this guy wants Dialogue: 0,0:00:50.76,0:00:52.80,Default,,0000,0000,0000,,to gain two electrons. Dialogue: 0,0:00:52.80,0:00:54.35,Default,,0000,0000,0000,,So what's going to happen? Dialogue: 0,0:00:54.35,0:00:57.63,Default,,0000,0000,0000,,The magnesium is going to\Nlose two electrons. Dialogue: 0,0:00:57.63,0:00:58.79,Default,,0000,0000,0000,,It was neutral. Dialogue: 0,0:00:58.79,0:01:03.51,Default,,0000,0000,0000,,So it's going to have a plus\N2 charge, hypothetically. Dialogue: 0,0:01:03.51,0:01:06.87,Default,,0000,0000,0000,,And then, the oxygen is going\Nto have a minus 2 charge, Dialogue: 0,0:01:06.87,0:01:10.49,Default,,0000,0000,0000,,because it gained the\Ntwo electrons. Dialogue: 0,0:01:10.49,0:01:14.71,Default,,0000,0000,0000,,So in this molecule of magnesium\Noxide, the oxidation Dialogue: 0,0:01:14.71,0:01:17.69,Default,,0000,0000,0000,,state of magnesium is plus 2. Dialogue: 0,0:01:17.69,0:01:22.41,Default,,0000,0000,0000,,And the oxidation state of\Nthe oxygen is minus 2. Dialogue: 0,0:01:22.41,0:01:26.09,Default,,0000,0000,0000,,Now let's do a slightly\Nharder one. Dialogue: 0,0:01:26.09,0:01:35.99,Default,,0000,0000,0000,,Let's say we had magnesium\Nhydroxide. Dialogue: 0,0:01:35.99,0:01:38.79,Default,,0000,0000,0000,,So hydroxide is OH2. Dialogue: 0,0:01:38.79,0:01:41.40,Default,,0000,0000,0000,, Dialogue: 0,0:01:41.40,0:01:47.08,Default,,0000,0000,0000,,OH2 right there, where there's\Ntwo hydroxide groups in this. Dialogue: 0,0:01:47.08,0:01:48.83,Default,,0000,0000,0000,,So, my temptation would\Nstill be, look. Dialogue: 0,0:01:48.83,0:01:52.84,Default,,0000,0000,0000,,Magnesium likes to lose its\Nelectrons, its two electrons, Dialogue: 0,0:01:52.84,0:01:55.42,Default,,0000,0000,0000,,which would make it's charge\Npositive-- it's hypothetical Dialogue: 0,0:01:55.42,0:01:57.50,Default,,0000,0000,0000,,oxidation state positive. Dialogue: 0,0:01:57.50,0:01:59.98,Default,,0000,0000,0000,,So my temptation is to say,\Nhey, magnesium here Dialogue: 0,0:01:59.98,0:02:00.50,Default,,0000,0000,0000,,would be plus 2. Dialogue: 0,0:02:00.50,0:02:03.33,Default,,0000,0000,0000,,So let me write that there. Dialogue: 0,0:02:03.33,0:02:06.83,Default,,0000,0000,0000,,And remember, in order for\Neverything to work out, if Dialogue: 0,0:02:06.83,0:02:10.84,Default,,0000,0000,0000,,it's a neutral compound, all of\Nthe oxidation states in it Dialogue: 0,0:02:10.84,0:02:11.94,Default,,0000,0000,0000,,have to add up to 1. Dialogue: 0,0:02:11.94,0:02:13.70,Default,,0000,0000,0000,,So let's see if that's\Ngoing to work out. Dialogue: 0,0:02:13.70,0:02:15.13,Default,,0000,0000,0000,,Now, oxygen. Dialogue: 0,0:02:15.13,0:02:17.74,Default,,0000,0000,0000,,My impulse is that its\Noxidation state Dialogue: 0,0:02:17.74,0:02:19.91,Default,,0000,0000,0000,,tends to be minus 2. Dialogue: 0,0:02:19.91,0:02:21.16,Default,,0000,0000,0000,,So let me write that down. Dialogue: 0,0:02:21.16,0:02:24.42,Default,,0000,0000,0000,, Dialogue: 0,0:02:24.42,0:02:27.24,Default,,0000,0000,0000,,And hydrogen, when it's bonded\Nwith an oxygen-- remember. Dialogue: 0,0:02:27.24,0:02:30.05,Default,,0000,0000,0000,,In this case, the hydrogen is\Nbonded with the oxygen first. Dialogue: 0,0:02:30.05,0:02:33.49,Default,,0000,0000,0000,,And then that's bonded\Nto the magnesium. Dialogue: 0,0:02:33.49,0:02:36.01,Default,,0000,0000,0000,,So the hydrogen is bonded\Nto an oxygen. Dialogue: 0,0:02:36.01,0:02:38.79,Default,,0000,0000,0000,,Hydrogen, if it was bonded to a\Nmagnesium, you might want to Dialogue: 0,0:02:38.79,0:02:41.81,Default,,0000,0000,0000,,say, hey, maybe it'll take the\Nelectrons and it'll have a Dialogue: 0,0:02:41.81,0:02:43.18,Default,,0000,0000,0000,,negative oxidation state. Dialogue: 0,0:02:43.18,0:02:46.29,Default,,0000,0000,0000,,But when hydrogen is bonded\Nwith oxygen, it Dialogue: 0,0:02:46.29,0:02:49.59,Default,,0000,0000,0000,,gives up the electrons. Dialogue: 0,0:02:49.59,0:02:51.70,Default,,0000,0000,0000,,It only has one electron\Nto give up. Dialogue: 0,0:02:51.70,0:02:54.54,Default,,0000,0000,0000,,So it has a plus 1\Noxidation state. Dialogue: 0,0:02:54.54,0:02:55.16,Default,,0000,0000,0000,,So let's see. Dialogue: 0,0:02:55.16,0:02:57.12,Default,,0000,0000,0000,,At first, you might say,\Nhey, I'm adding up Dialogue: 0,0:02:57.12,0:02:58.10,Default,,0000,0000,0000,,the oxidation states. Dialogue: 0,0:02:58.10,0:03:00.84,Default,,0000,0000,0000,,Plus 2 minus 2 is 0 plus 1. Dialogue: 0,0:03:00.84,0:03:03.84,Default,,0000,0000,0000,,I get a plus 1 oxidation\Nstate here. Dialogue: 0,0:03:03.84,0:03:04.88,Default,,0000,0000,0000,,That doesn't make sense, Sal. Dialogue: 0,0:03:04.88,0:03:06.35,Default,,0000,0000,0000,,This is a neutral compound. Dialogue: 0,0:03:06.35,0:03:08.70,Default,,0000,0000,0000,,And what you to remember is oh,\Nno, but you have two of Dialogue: 0,0:03:08.70,0:03:10.96,Default,,0000,0000,0000,,these hydroxides right here. Dialogue: 0,0:03:10.96,0:03:15.57,Default,,0000,0000,0000,,So what you do is you figure out\Nthe sum of the oxidation Dialogue: 0,0:03:15.57,0:03:17.39,Default,,0000,0000,0000,,states of the hydroxide. Dialogue: 0,0:03:17.39,0:03:20.50,Default,,0000,0000,0000,,So that's minus 2 plus 1. Dialogue: 0,0:03:20.50,0:03:23.15,Default,,0000,0000,0000,,So for the entire hydroxide\Nmolecule, you Dialogue: 0,0:03:23.15,0:03:25.82,Default,,0000,0000,0000,,have a minus 1 sum. Dialogue: 0,0:03:25.82,0:03:27.46,Default,,0000,0000,0000,,And then you have two of them. Dialogue: 0,0:03:27.46,0:03:27.75,Default,,0000,0000,0000,,Right? Dialogue: 0,0:03:27.75,0:03:30.90,Default,,0000,0000,0000,,You have two hydroxide\Nmolecules here. Dialogue: 0,0:03:30.90,0:03:35.25,Default,,0000,0000,0000,,So the contribution to the\Nentire compound's oxidation Dialogue: 0,0:03:35.25,0:03:37.57,Default,,0000,0000,0000,,state will be minus 1\Nfor each hydroxide. Dialogue: 0,0:03:37.57,0:03:39.50,Default,,0000,0000,0000,,But then you have two of them. Dialogue: 0,0:03:39.50,0:03:42.96,Default,,0000,0000,0000,,So it's minus 2 and then plus\N2 from the magnesium. Dialogue: 0,0:03:42.96,0:03:45.60,Default,,0000,0000,0000,,And it all adds up to 0. Dialogue: 0,0:03:45.60,0:03:47.44,Default,,0000,0000,0000,,So that worked out. Dialogue: 0,0:03:47.44,0:03:49.35,Default,,0000,0000,0000,,Now, I want to do a little\Nbit of an aside. Dialogue: 0,0:03:49.35,0:03:51.83,Default,,0000,0000,0000,,I want to go back to doing\Nsome problems again. Dialogue: 0,0:03:51.83,0:03:53.58,Default,,0000,0000,0000,,But I want to do a little bit\Nof an aside on some of my Dialogue: 0,0:03:53.58,0:03:54.31,Default,,0000,0000,0000,,terminology. Dialogue: 0,0:03:54.31,0:03:56.63,Default,,0000,0000,0000,,Because I've kind of used\Noxidation state, and oxidized, Dialogue: 0,0:03:56.63,0:04:00.36,Default,,0000,0000,0000,,and reduced interchangeably,\Nto a certain degree. Dialogue: 0,0:04:00.36,0:04:05.03,Default,,0000,0000,0000,,But, we've done so many\Nproblems with water Dialogue: 0,0:04:05.03,0:04:10.56,Default,,0000,0000,0000,,autoionizing into-- actually,\Nlet me do 2 moles of water. Dialogue: 0,0:04:10.56,0:04:19.84,Default,,0000,0000,0000,,And it's in equilibrium with 1\Nmole of H30 plus OH minus. Dialogue: 0,0:04:19.84,0:04:22.65,Default,,0000,0000,0000,,And obviously, everything is\Nin an aqueous solution. Dialogue: 0,0:04:22.65,0:04:23.84,Default,,0000,0000,0000,,Now, let's look at the water. Dialogue: 0,0:04:23.84,0:04:26.62,Default,,0000,0000,0000,,What are the oxidation states\Nin this water right here? Dialogue: 0,0:04:26.62,0:04:28.62,Default,,0000,0000,0000,,Well, we've done this already\Nin the previous video. Dialogue: 0,0:04:28.62,0:04:32.34,Default,,0000,0000,0000,,Oxidation state of oxygen is\Nminus 2, because it's hogging Dialogue: 0,0:04:32.34,0:04:34.40,Default,,0000,0000,0000,,the two electrons from\Nthe two hydrogens. Dialogue: 0,0:04:34.40,0:04:36.70,Default,,0000,0000,0000,,Each hydrogen is giving\Nup an electron. Dialogue: 0,0:04:36.70,0:04:39.21,Default,,0000,0000,0000,,So it has an oxidation\Nstate of plus 1. Dialogue: 0,0:04:39.21,0:04:40.40,Default,,0000,0000,0000,,And we see this molecule. Dialogue: 0,0:04:40.40,0:04:41.62,Default,,0000,0000,0000,,Everything adds up. Dialogue: 0,0:04:41.62,0:04:43.70,Default,,0000,0000,0000,,Because you have two hydrogens\Nwith a plus 1. Dialogue: 0,0:04:43.70,0:04:45.35,Default,,0000,0000,0000,,So that's plus 2. Dialogue: 0,0:04:45.35,0:04:48.18,Default,,0000,0000,0000,,Plus 2 minus 2 for that one\Noxygen, and you get to 0. Dialogue: 0,0:04:48.18,0:04:49.99,Default,,0000,0000,0000,,And it's a neutral compound. Dialogue: 0,0:04:49.99,0:04:52.65,Default,,0000,0000,0000,,Now here, what are the\Noxidation states? Dialogue: 0,0:04:52.65,0:04:58.66,Default,,0000,0000,0000,,So one of these hydrogens left\None of these water molecules Dialogue: 0,0:04:58.66,0:05:01.22,Default,,0000,0000,0000,,and joined the other of the\Nwater molecules without taking Dialogue: 0,0:05:01.22,0:05:02.42,Default,,0000,0000,0000,,its electron with it. Dialogue: 0,0:05:02.42,0:05:04.56,Default,,0000,0000,0000,,So it left the electron\Nover here. Dialogue: 0,0:05:04.56,0:05:09.93,Default,,0000,0000,0000,,So that oxygen still has a\Nminus 2 oxidation state. Dialogue: 0,0:05:09.93,0:05:13.29,Default,,0000,0000,0000,,And this hydrogen still\Nhas a plus 1. Dialogue: 0,0:05:13.29,0:05:15.19,Default,,0000,0000,0000,,And that's why you do\Nminus 2 plus 1. Dialogue: 0,0:05:15.19,0:05:16.30,Default,,0000,0000,0000,,You get minus 1. Dialogue: 0,0:05:16.30,0:05:18.66,Default,,0000,0000,0000,,And this time, it works out,\Nbecause that's the actual Dialogue: 0,0:05:18.66,0:05:20.91,Default,,0000,0000,0000,,charge on this hydroxide ion. Dialogue: 0,0:05:20.91,0:05:22.94,Default,,0000,0000,0000,,Now, here, what are the\Noxidation states? Dialogue: 0,0:05:22.94,0:05:28.23,Default,,0000,0000,0000,,Each of the hydrogens have\Na plus 1 oxidation state. Dialogue: 0,0:05:28.23,0:05:32.07,Default,,0000,0000,0000,,And then this oxygen\Nhas a minus 2. Dialogue: 0,0:05:32.07,0:05:33.86,Default,,0000,0000,0000,,And so if you look at the\Ncharge for the entire Dialogue: 0,0:05:33.86,0:05:38.73,Default,,0000,0000,0000,,molecule, plus 1 on three\Nhydrogens, so that's plus 3. Dialogue: 0,0:05:38.73,0:05:39.61,Default,,0000,0000,0000,,I just added them up. Dialogue: 0,0:05:39.61,0:05:41.48,Default,,0000,0000,0000,,Minus 2. Dialogue: 0,0:05:41.48,0:05:45.08,Default,,0000,0000,0000,,So plus 3 minus 2, I should have\Na plus 1 charge on this Dialogue: 0,0:05:45.08,0:05:47.37,Default,,0000,0000,0000,,entire molecule, which\Nis the case. Dialogue: 0,0:05:47.37,0:05:51.26,Default,,0000,0000,0000,,Now, my question to you is has\Nany of the oxidation states Dialogue: 0,0:05:51.26,0:05:52.93,Default,,0000,0000,0000,,changed for any of the atoms? Dialogue: 0,0:05:52.93,0:05:55.85,Default,,0000,0000,0000,,All of the hydrogens here--\Nand we could call Dialogue: 0,0:05:55.85,0:05:58.12,Default,,0000,0000,0000,,this 2 moles of water. Dialogue: 0,0:05:58.12,0:06:00.57,Default,,0000,0000,0000,,Or maybe I just have two\Nmolecules of water. Dialogue: 0,0:06:00.57,0:06:02.28,Default,,0000,0000,0000,,But I have four hydrogens\Nhere. Dialogue: 0,0:06:02.28,0:06:02.60,Default,,0000,0000,0000,,Right? Dialogue: 0,0:06:02.60,0:06:04.89,Default,,0000,0000,0000,,And all of them had an\Noxidation state of 1. Dialogue: 0,0:06:04.89,0:06:07.05,Default,,0000,0000,0000,,On the right-hand side,\NI have four hydrogens. Dialogue: 0,0:06:07.05,0:06:10.05,Default,,0000,0000,0000,,All of them have an oxidation\Nstate of 1. Dialogue: 0,0:06:10.05,0:06:14.37,Default,,0000,0000,0000,,So although their oxidation\Nstate is 1, in this reaction-- Dialogue: 0,0:06:14.37,0:06:16.86,Default,,0000,0000,0000,,and you can pick either\Ndirection of the reaction-- Dialogue: 0,0:06:16.86,0:06:19.72,Default,,0000,0000,0000,,hydrogen has not\Nbeen oxidized. Dialogue: 0,0:06:19.72,0:06:21.72,Default,,0000,0000,0000,,Its oxidation state\Ndid not change. Dialogue: 0,0:06:21.72,0:06:24.27,Default,,0000,0000,0000,, Dialogue: 0,0:06:24.27,0:06:26.57,Default,,0000,0000,0000,,Maybe it was oxidized in a\Nprevious reaction where the Dialogue: 0,0:06:26.57,0:06:30.31,Default,,0000,0000,0000,,water was formed, but in this\Nreaction, it was not oxidized. Dialogue: 0,0:06:30.31,0:06:34.16,Default,,0000,0000,0000,,Likewise, the oxygens-- we have\Ntwo oxygen molecules, or Dialogue: 0,0:06:34.16,0:06:35.04,Default,,0000,0000,0000,,atoms, here. Dialogue: 0,0:06:35.04,0:06:37.65,Default,,0000,0000,0000,,Each have a minus 2\Noxidation state. Dialogue: 0,0:06:37.65,0:06:39.38,Default,,0000,0000,0000,,Here, we have two oxygen\Nmolecules. Dialogue: 0,0:06:39.38,0:06:41.63,Default,,0000,0000,0000,,Each have a minus 2\Noxidation state. Dialogue: 0,0:06:41.63,0:06:46.00,Default,,0000,0000,0000,,Due to this reaction, at least,\Nno electrons changed Dialogue: 0,0:06:46.00,0:06:48.14,Default,,0000,0000,0000,,hands in our oxidation\Nstate world. Dialogue: 0,0:06:48.14,0:06:52.25,Default,,0000,0000,0000,,So this is not an oxidation\Nor a reduction reaction. Dialogue: 0,0:06:52.25,0:06:54.25,Default,,0000,0000,0000,,And I'm going to cover that in\Ndetail in the next video. Dialogue: 0,0:06:54.25,0:06:57.08,Default,,0000,0000,0000,,And I just want to be clear that\Nnothing here was oxidized Dialogue: 0,0:06:57.08,0:07:01.16,Default,,0000,0000,0000,,or reduced, because\Ntheir oxidation Dialogue: 0,0:07:01.16,0:07:03.18,Default,,0000,0000,0000,,states stayed the same. Dialogue: 0,0:07:03.18,0:07:07.87,Default,,0000,0000,0000,,Because sometimes I'll\Nsay, hey, look. Dialogue: 0,0:07:07.87,0:07:10.58,Default,,0000,0000,0000,,Magnesium has an oxidation\Nstate of plus 2. Dialogue: 0,0:07:10.58,0:07:13.65,Default,,0000,0000,0000,,And oxygen has an oxidation\Nstate of minus 2. Dialogue: 0,0:07:13.65,0:07:15.31,Default,,0000,0000,0000,,Magnesium was oxidized. Dialogue: 0,0:07:15.31,0:07:17.22,Default,,0000,0000,0000,,Two electrons were taken\Naway from it. Dialogue: 0,0:07:17.22,0:07:18.67,Default,,0000,0000,0000,,And oxygen was reduced. Dialogue: 0,0:07:18.67,0:07:20.18,Default,,0000,0000,0000,,Two electrons were\Ngiven to it. Dialogue: 0,0:07:20.18,0:07:22.62,Default,,0000,0000,0000,,And I'll say that implying some\Nreaction that produced Dialogue: 0,0:07:22.62,0:07:24.68,Default,,0000,0000,0000,,it, but that's not\Nalways the case. Dialogue: 0,0:07:24.68,0:07:26.12,Default,,0000,0000,0000,,You could have a reaction\Nwhere that Dialogue: 0,0:07:26.12,0:07:27.12,Default,,0000,0000,0000,,necessarily didn't happen. Dialogue: 0,0:07:27.12,0:07:29.76,Default,,0000,0000,0000,,But the oxidation state\Nfor magnesium is Dialogue: 0,0:07:29.76,0:07:31.05,Default,,0000,0000,0000,,definitely plus 2. Dialogue: 0,0:07:31.05,0:07:35.52,Default,,0000,0000,0000,,And the oxidation state for the\Noxygen, or the oxidation Dialogue: 0,0:07:35.52,0:07:37.38,Default,,0000,0000,0000,,number, is minus 2. Dialogue: 0,0:07:37.38,0:07:38.96,Default,,0000,0000,0000,,But I think you know what I'm\Ntalking about when I say it Dialogue: 0,0:07:38.96,0:07:40.33,Default,,0000,0000,0000,,was oxidized. Dialogue: 0,0:07:40.33,0:07:44.13,Default,,0000,0000,0000,,At some point, it went from\Na neutral magnesium to a Dialogue: 0,0:07:44.13,0:07:47.31,Default,,0000,0000,0000,,positively charged magnesium\Nby losing two electrons. Dialogue: 0,0:07:47.31,0:07:49.51,Default,,0000,0000,0000,,So it got oxidized. Dialogue: 0,0:07:49.51,0:07:53.28,Default,,0000,0000,0000,,Now, let's do some harder\Nproblems. So hydrogen Dialogue: 0,0:07:53.28,0:07:57.26,Default,,0000,0000,0000,,peroxide-- I've said multiple\Ntimes already that oxygen Dialogue: 0,0:07:57.26,0:08:01.60,Default,,0000,0000,0000,,tends to have a minus\N2 oxidation state. Dialogue: 0,0:08:01.60,0:08:02.45,Default,,0000,0000,0000,,This is minus 1. Dialogue: 0,0:08:02.45,0:08:04.91,Default,,0000,0000,0000,,I think you see the pattern. Dialogue: 0,0:08:04.91,0:08:06.90,Default,,0000,0000,0000,,These guys are plus 1. Dialogue: 0,0:08:06.90,0:08:09.10,Default,,0000,0000,0000,,Hydrogen is plus or minus 1. Dialogue: 0,0:08:09.10,0:08:10.45,Default,,0000,0000,0000,,These guys are plus 2. Dialogue: 0,0:08:10.45,0:08:11.52,Default,,0000,0000,0000,,I think you see the pattern. Dialogue: 0,0:08:11.52,0:08:15.07,Default,,0000,0000,0000,,It's whether you want to\Nlose or gain electrons. Dialogue: 0,0:08:15.07,0:08:17.45,Default,,0000,0000,0000,,You might say, well see,\Nwater normally Dialogue: 0,0:08:17.45,0:08:19.59,Default,,0000,0000,0000,,has a minus 2 oxidation. Dialogue: 0,0:08:19.59,0:08:22.47,Default,,0000,0000,0000,,So you might be tempted\Nto do-- OK. Dialogue: 0,0:08:22.47,0:08:25.47,Default,,0000,0000,0000,,Hydrogen has plus 1, because\Nit's bonding with water. Dialogue: 0,0:08:25.47,0:08:28.69,Default,,0000,0000,0000,,And oxygen has a minus 2. Dialogue: 0,0:08:28.69,0:08:31.44,Default,,0000,0000,0000,,But when you do that, you\Nimmediately have a conundrum. Dialogue: 0,0:08:31.44,0:08:34.24,Default,,0000,0000,0000,,This is a neutral molecule--\Nlet's see. Dialogue: 0,0:08:34.24,0:08:35.48,Default,,0000,0000,0000,,Two hydrogens plus 2. Dialogue: 0,0:08:35.48,0:08:36.61,Default,,0000,0000,0000,,Two oxygens at minus 2. Dialogue: 0,0:08:36.61,0:08:37.29,Default,,0000,0000,0000,,Minus 4. Dialogue: 0,0:08:37.29,0:08:40.13,Default,,0000,0000,0000,,So this would end up with\Na minus 4 total Dialogue: 0,0:08:40.13,0:08:41.72,Default,,0000,0000,0000,,net oxidation state. Dialogue: 0,0:08:41.72,0:08:42.78,Default,,0000,0000,0000,,And that's not the\Ncase because this Dialogue: 0,0:08:42.78,0:08:44.30,Default,,0000,0000,0000,,doesn't have any charge. Dialogue: 0,0:08:44.30,0:08:45.98,Default,,0000,0000,0000,,So there's a conundrum here. Dialogue: 0,0:08:45.98,0:08:48.39,Default,,0000,0000,0000,,And the conundrum is because,\Nif you actually look at the Dialogue: 0,0:08:48.39,0:08:52.14,Default,,0000,0000,0000,,structure of hydrogen peroxide,\Nthe oxygens are Dialogue: 0,0:08:52.14,0:08:53.83,Default,,0000,0000,0000,,actually bonded to each other. Dialogue: 0,0:08:53.83,0:08:56.12,Default,,0000,0000,0000,,That's where the peroxide\Ncomes from. Dialogue: 0,0:08:56.12,0:09:00.59,Default,,0000,0000,0000,,And then each of those are\Nbonded to a hydrogen. Dialogue: 0,0:09:00.59,0:09:04.67,Default,,0000,0000,0000,,So in this case, especially in a\Nfirst-year chemistry course, Dialogue: 0,0:09:04.67,0:09:07.19,Default,,0000,0000,0000,,the peroxide molecules,\Nespecially hydrogen peroxide, Dialogue: 0,0:09:07.19,0:09:09.11,Default,,0000,0000,0000,,tends to be that one\Nspecial case. Dialogue: 0,0:09:09.11,0:09:11.66,Default,,0000,0000,0000,,There are others, but this is\Nthe one special case where Dialogue: 0,0:09:11.66,0:09:15.54,Default,,0000,0000,0000,,oxygen does not have a minus\N2 oxidation state. Dialogue: 0,0:09:15.54,0:09:17.55,Default,,0000,0000,0000,,Let's look at this and try to\Nfigure out what oxygen's Dialogue: 0,0:09:17.55,0:09:20.75,Default,,0000,0000,0000,,oxidation state would be\Nin hydrogen peroxide. Dialogue: 0,0:09:20.75,0:09:23.74,Default,,0000,0000,0000,,So in this case, the\Nhydrogen-oxygen bond, oxygen Dialogue: 0,0:09:23.74,0:09:26.46,Default,,0000,0000,0000,,is going to hog the electron\Nand hydrogen is Dialogue: 0,0:09:26.46,0:09:27.32,Default,,0000,0000,0000,,going to lose it. Dialogue: 0,0:09:27.32,0:09:28.78,Default,,0000,0000,0000,,So it's going to have\Na plus 1 there. Dialogue: 0,0:09:28.78,0:09:30.43,Default,,0000,0000,0000,,Same thing on the side. Dialogue: 0,0:09:30.43,0:09:33.06,Default,,0000,0000,0000,,Oxygen, at least on this bond,\Nis going to have a plus 1. Dialogue: 0,0:09:33.06,0:09:34.79,Default,,0000,0000,0000,,It's going to gain\Nan electron. Dialogue: 0,0:09:34.79,0:09:37.38,Default,,0000,0000,0000,,What about from this other bond\Nwith the other oxygen? Dialogue: 0,0:09:37.38,0:09:39.76,Default,,0000,0000,0000,,Well, there's no reason why\None oxygen should hog the Dialogue: 0,0:09:39.76,0:09:41.17,Default,,0000,0000,0000,,electron from the\Nother oxygen. Dialogue: 0,0:09:41.17,0:09:43.56,Default,,0000,0000,0000,,So it's not going to have\Nany net impact on Dialogue: 0,0:09:43.56,0:09:45.00,Default,,0000,0000,0000,,its oxidation state. Dialogue: 0,0:09:45.00,0:09:49.47,Default,,0000,0000,0000,,So in this case, this oxygen's\Noxidation state is plus 1. Dialogue: 0,0:09:49.47,0:09:53.58,Default,,0000,0000,0000,,This oxygen's oxidation\Nstate is also plus 1. Dialogue: 0,0:09:53.58,0:09:59.62,Default,,0000,0000,0000,,So each of the hydrogens have an\Noxidation number of plus 1. Dialogue: 0,0:09:59.62,0:10:03.08,Default,,0000,0000,0000,,You said the oxygens have an\Noxidation number of minus 1. Dialogue: 0,0:10:03.08,0:10:05.93,Default,,0000,0000,0000,,And so you have a net of 0. Dialogue: 0,0:10:05.93,0:10:09.26,Default,,0000,0000,0000,,2 times plus 1, plus 2\Ntimes minus 1, is 0. Dialogue: 0,0:10:09.26,0:10:11.08,Default,,0000,0000,0000,,So that's just a special case. Dialogue: 0,0:10:11.08,0:10:13.29,Default,,0000,0000,0000,,That's a good one to\Nbe familiar with. Dialogue: 0,0:10:13.29,0:10:14.17,Default,,0000,0000,0000,,Let's do another one. Dialogue: 0,0:10:14.17,0:10:15.97,Default,,0000,0000,0000,,Iron 3 carbonate. Dialogue: 0,0:10:15.97,0:10:18.41,Default,,0000,0000,0000,,And now, for the first time--\NI remember when we first Dialogue: 0,0:10:18.41,0:10:19.92,Default,,0000,0000,0000,,encountered iron 3 carbonate. Dialogue: 0,0:10:19.92,0:10:22.99,Default,,0000,0000,0000,,You probably thought, hey, why\Nis it called iron 3 carbonate Dialogue: 0,0:10:22.99,0:10:25.27,Default,,0000,0000,0000,,when there are only two\Niron molecules, or Dialogue: 0,0:10:25.27,0:10:26.35,Default,,0000,0000,0000,,two iron atoms, here? Dialogue: 0,0:10:26.35,0:10:27.84,Default,,0000,0000,0000,,And you're about to learn why. Dialogue: 0,0:10:27.84,0:10:30.31,Default,,0000,0000,0000,,Let's look at the oxidation\Nnumbers. Dialogue: 0,0:10:30.31,0:10:31.85,Default,,0000,0000,0000,,So oxygen. Dialogue: 0,0:10:31.85,0:10:35.61,Default,,0000,0000,0000,,Oxygen's oxidation number\Ntends to be minus 2. Dialogue: 0,0:10:35.61,0:10:38.53,Default,,0000,0000,0000,, Dialogue: 0,0:10:38.53,0:10:41.76,Default,,0000,0000,0000,,Now, if carbon is bonding with\Noxygen-- let's look at the Dialogue: 0,0:10:41.76,0:10:43.33,Default,,0000,0000,0000,,periodic table. Dialogue: 0,0:10:43.33,0:10:46.91,Default,,0000,0000,0000,,We have carbon bonding\Nwith oxygen. Dialogue: 0,0:10:46.91,0:10:48.72,Default,,0000,0000,0000,,Carbon can go either way. Dialogue: 0,0:10:48.72,0:10:51.12,Default,,0000,0000,0000,,Carbon, sometimes it likes\Nto give away electrons. Dialogue: 0,0:10:51.12,0:10:53.04,Default,,0000,0000,0000,,Sometimes it likes to\Ngain electrons. Dialogue: 0,0:10:53.04,0:10:57.27,Default,,0000,0000,0000,,When carbon is bonding with\Noxygen, this right here is the Dialogue: 0,0:10:57.27,0:10:58.81,Default,,0000,0000,0000,,electron hog. Dialogue: 0,0:10:58.81,0:11:01.16,Default,,0000,0000,0000,,If we had to say who's\Ntaking the electrons, Dialogue: 0,0:11:01.16,0:11:03.01,Default,,0000,0000,0000,,it's going to be oxygen. Dialogue: 0,0:11:03.01,0:11:03.54,Default,,0000,0000,0000,,Right? Dialogue: 0,0:11:03.54,0:11:07.04,Default,,0000,0000,0000,,So carbon is going to be giving\Naway its electrons. Dialogue: 0,0:11:07.04,0:11:10.20,Default,,0000,0000,0000,,But how many electrons\Ncan carbon give away? Dialogue: 0,0:11:10.20,0:11:10.94,Default,,0000,0000,0000,,Well, let's see. Dialogue: 0,0:11:10.94,0:11:14.72,Default,,0000,0000,0000,,It has 1, 2, 3, 4 valence\Nelectrons. Dialogue: 0,0:11:14.72,0:11:16.24,Default,,0000,0000,0000,,So the most it can really\Ndo is give away Dialogue: 0,0:11:16.24,0:11:19.39,Default,,0000,0000,0000,,four valence electrons. Dialogue: 0,0:11:19.39,0:11:21.67,Default,,0000,0000,0000,,So let's go back to\Nthe carbonate. Dialogue: 0,0:11:21.67,0:11:27.04,Default,,0000,0000,0000,,So the carbon could at\Nmost give away its Dialogue: 0,0:11:27.04,0:11:29.93,Default,,0000,0000,0000,,four valence electrons. Dialogue: 0,0:11:29.93,0:11:32.40,Default,,0000,0000,0000,,So what will be the net\Noxidation number for the Dialogue: 0,0:11:32.40,0:11:33.77,Default,,0000,0000,0000,,carbonate molecule? Dialogue: 0,0:11:33.77,0:11:36.81,Default,,0000,0000,0000,,For the CO3? Dialogue: 0,0:11:36.81,0:11:39.43,Default,,0000,0000,0000,,So this is a plus 4 oxidation,\Nbecause it only has Dialogue: 0,0:11:39.43,0:11:40.27,Default,,0000,0000,0000,,four to give away. Dialogue: 0,0:11:40.27,0:11:42.26,Default,,0000,0000,0000,,If it's bonding with oxygen,\Nit's going to give them away. Dialogue: 0,0:11:42.26,0:11:44.63,Default,,0000,0000,0000,,Oxygen is more of a hog. Dialogue: 0,0:11:44.63,0:11:47.64,Default,,0000,0000,0000,,Each oxygen has a minus 2. Dialogue: 0,0:11:47.64,0:11:48.59,Default,,0000,0000,0000,,So let's think about it. Dialogue: 0,0:11:48.59,0:11:54.21,Default,,0000,0000,0000,,I have plus 4 minus,\N3 times minus 2. Dialogue: 0,0:11:54.21,0:11:54.70,Default,,0000,0000,0000,,Right? Dialogue: 0,0:11:54.70,0:11:56.87,Default,,0000,0000,0000,,I have 3 oxygen molecules. Dialogue: 0,0:11:56.87,0:12:00.29,Default,,0000,0000,0000,,So I have 4 minus 6 is\Nequal to minus 2. Dialogue: 0,0:12:00.29,0:12:02.73,Default,,0000,0000,0000,,So we can kind of view it as the\Noxidation number for the Dialogue: 0,0:12:02.73,0:12:06.99,Default,,0000,0000,0000,,entire carbonate molecule\Nis minus 2. Dialogue: 0,0:12:06.99,0:12:11.21,Default,,0000,0000,0000,,Now, if this entire carbonate\Nmolecule is minus 2, its Dialogue: 0,0:12:11.21,0:12:16.92,Default,,0000,0000,0000,,contribution to the oxidation\Nstate for this whole kind of-- Dialogue: 0,0:12:16.92,0:12:18.62,Default,,0000,0000,0000,,the carbonate part\Nof the molecule. Dialogue: 0,0:12:18.62,0:12:20.98,Default,,0000,0000,0000,,We have 3 carbonate molecules. Dialogue: 0,0:12:20.98,0:12:22.71,Default,,0000,0000,0000,,Each of them is contributing\Nminus 2. Dialogue: 0,0:12:22.71,0:12:25.74,Default,,0000,0000,0000,,So I have a minus\N6 contribution. Dialogue: 0,0:12:25.74,0:12:29.38,Default,,0000,0000,0000,,If this is minus 6 and this is a\Nneutral molecule, then our 2 Dialogue: 0,0:12:29.38,0:12:32.88,Default,,0000,0000,0000,,irons are also going\Nto have to have a Dialogue: 0,0:12:32.88,0:12:35.29,Default,,0000,0000,0000,,plus 6 oxidation state. Dialogue: 0,0:12:35.29,0:12:38.03,Default,,0000,0000,0000,,Because it all has\Nto add up to 0. Dialogue: 0,0:12:38.03,0:12:42.40,Default,,0000,0000,0000,,If both irons combined have\Na plus 6 contribution to Dialogue: 0,0:12:42.40,0:12:44.38,Default,,0000,0000,0000,,oxidation state, then each\Nof the irons must Dialogue: 0,0:12:44.38,0:12:46.46,Default,,0000,0000,0000,,have a plus 3 oxidation. Dialogue: 0,0:12:46.46,0:12:50.93,Default,,0000,0000,0000,,Or that, in our hypothetical\Nworld, if this happens, at Dialogue: 0,0:12:50.93,0:12:53.51,Default,,0000,0000,0000,,least three electrons are going\Nto favor the carbonate Dialogue: 0,0:12:53.51,0:12:55.24,Default,,0000,0000,0000,,from each of the irons. Dialogue: 0,0:12:55.24,0:12:57.98,Default,,0000,0000,0000,,So why is it called\Niron 3 carbonate? Dialogue: 0,0:12:57.98,0:13:01.34,Default,,0000,0000,0000,,I think you may have figured\Nthis out by now. Dialogue: 0,0:13:01.34,0:13:04.60,Default,,0000,0000,0000,,Because this is iron in its\Nthird oxidation state. Dialogue: 0,0:13:04.60,0:13:06.52,Default,,0000,0000,0000,,Iron-- a lot of the metals,\Nespecially a lot of the Dialogue: 0,0:13:06.52,0:13:09.79,Default,,0000,0000,0000,,transition metals-- can have\Nmultiple oxidation states. Dialogue: 0,0:13:09.79,0:13:11.97,Default,,0000,0000,0000,,When you have iron 3 carbonate,\Nyou're literally Dialogue: 0,0:13:11.97,0:13:14.13,Default,,0000,0000,0000,,saying, this is the third\Noxidation state. Dialogue: 0,0:13:14.13,0:13:18.12,Default,,0000,0000,0000,,Or iron's oxidation number\Nin this molecule Dialogue: 0,0:13:18.12,0:13:20.78,Default,,0000,0000,0000,,will be positive 3. Dialogue: 0,0:13:20.78,0:13:21.90,Default,,0000,0000,0000,,Now, let's do another one. Dialogue: 0,0:13:21.90,0:13:23.00,Default,,0000,0000,0000,,This is interesting. Dialogue: 0,0:13:23.00,0:13:24.01,Default,,0000,0000,0000,,Acetic acid. Dialogue: 0,0:13:24.01,0:13:25.56,Default,,0000,0000,0000,,And I think is the first time\Nthat I've actually shown you Dialogue: 0,0:13:25.56,0:13:30.74,Default,,0000,0000,0000,,the formula for acetic acid. Dialogue: 0,0:13:30.74,0:13:33.41,Default,,0000,0000,0000,,I won't go into the whole\Norganic chemistry of it. Dialogue: 0,0:13:33.41,0:13:37.29,Default,,0000,0000,0000,,But let's try to figure out\Nwhat the different charges Dialogue: 0,0:13:37.29,0:13:38.84,Default,,0000,0000,0000,,are, or the different\Noxidation states. Dialogue: 0,0:13:38.84,0:13:41.51,Default,,0000,0000,0000,, Dialogue: 0,0:13:41.51,0:13:43.61,Default,,0000,0000,0000,,Sometimes you'll just see\Nit written like this. Dialogue: 0,0:13:43.61,0:13:45.43,Default,,0000,0000,0000,,You'd say, OK. Dialogue: 0,0:13:45.43,0:13:47.53,Default,,0000,0000,0000,,Oxygens, each of those are\Ngoing to have minus 2. Dialogue: 0,0:13:47.53,0:13:51.13,Default,,0000,0000,0000,, Dialogue: 0,0:13:51.13,0:13:52.57,Default,,0000,0000,0000,,Hydrogens are each going\Nto have plus 1. Dialogue: 0,0:13:52.57,0:13:56.27,Default,,0000,0000,0000,, Dialogue: 0,0:13:56.27,0:13:58.52,Default,,0000,0000,0000,,So how are we doing so far? Dialogue: 0,0:13:58.52,0:14:02.10,Default,,0000,0000,0000,,So these oxygens are going\Nto contribute minus 4. Dialogue: 0,0:14:02.10,0:14:06.20,Default,,0000,0000,0000,,And then the hydrogens--\Nhere you have plus 3. Dialogue: 0,0:14:06.20,0:14:09.26,Default,,0000,0000,0000,,And then here you have plus 1. Dialogue: 0,0:14:09.26,0:14:10.92,Default,,0000,0000,0000,,You add these up and\Nyou get to 0. Dialogue: 0,0:14:10.92,0:14:11.74,Default,,0000,0000,0000,,And you're like, oh. Dialogue: 0,0:14:11.74,0:14:14.43,Default,,0000,0000,0000,,So the carbons must have\Nno oxidation state. Dialogue: 0,0:14:14.43,0:14:17.28,Default,,0000,0000,0000,,They must have an oxidation\Nnumber of 0. Dialogue: 0,0:14:17.28,0:14:22.18,Default,,0000,0000,0000,,Because we're already at 0, if\Nwe just consider the hydrogens Dialogue: 0,0:14:22.18,0:14:23.37,Default,,0000,0000,0000,,and the oxygens. Dialogue: 0,0:14:23.37,0:14:26.23,Default,,0000,0000,0000,,So let's look at that and see\Nif that's actually the case. Dialogue: 0,0:14:26.23,0:14:29.36,Default,,0000,0000,0000,,So when carbon is bonding with\Nhydrogen, who's going to hog Dialogue: 0,0:14:29.36,0:14:32.10,Default,,0000,0000,0000,,the electrons? Dialogue: 0,0:14:32.10,0:14:35.33,Default,,0000,0000,0000,,When carbon is bonding\Nwith hydrogen. Dialogue: 0,0:14:35.33,0:14:37.32,Default,,0000,0000,0000,,Electronegativity-- as\Nyou go to the right. Dialogue: 0,0:14:37.32,0:14:39.33,Default,,0000,0000,0000,,Carbon is more electronegative. Dialogue: 0,0:14:39.33,0:14:42.59,Default,,0000,0000,0000,,It likes to keep the electrons,\Nor hog them, more Dialogue: 0,0:14:42.59,0:14:43.31,Default,,0000,0000,0000,,than hydrogen. Dialogue: 0,0:14:43.31,0:14:46.08,Default,,0000,0000,0000,,So hydrogen is going to lose the\Nelectrons in our oxidation Dialogue: 0,0:14:46.08,0:14:46.86,Default,,0000,0000,0000,,state world. Dialogue: 0,0:14:46.86,0:14:50.38,Default,,0000,0000,0000,,It's actually a covalent bond,\Nbut of course, we know that Dialogue: 0,0:14:50.38,0:14:52.43,Default,,0000,0000,0000,,when we're dealing with\Noxidation states, we pretend Dialogue: 0,0:14:52.43,0:14:53.63,Default,,0000,0000,0000,,that it's ionic. Dialogue: 0,0:14:53.63,0:14:56.03,Default,,0000,0000,0000,,So in this case, your\Nhydrogens are Dialogue: 0,0:14:56.03,0:14:58.10,Default,,0000,0000,0000,,going to lose electrons. Dialogue: 0,0:14:58.10,0:15:00.92,Default,,0000,0000,0000,,So they're each going to have an\Noxidation state of plus 1. Dialogue: 0,0:15:00.92,0:15:03.40,Default,,0000,0000,0000,,That's consistent with\Nwhat we know so far. Dialogue: 0,0:15:03.40,0:15:04.73,Default,,0000,0000,0000,,And actually, that's\Nanother thing. Dialogue: 0,0:15:04.73,0:15:06.77,Default,,0000,0000,0000,,When I did this exercise, right\Nhere, I immediately Dialogue: 0,0:15:06.77,0:15:10.42,Default,,0000,0000,0000,,assumed hydrogen has an\Noxidation state of plus 1. Dialogue: 0,0:15:10.42,0:15:12.19,Default,,0000,0000,0000,,I did that because, oh,\Neverything else in the Dialogue: 0,0:15:12.19,0:15:15.00,Default,,0000,0000,0000,,molecule is carbon and oxygen,\Nwhich are more electronegative Dialogue: 0,0:15:15.00,0:15:15.70,Default,,0000,0000,0000,,than the hydrogen. Dialogue: 0,0:15:15.70,0:15:18.19,Default,,0000,0000,0000,,So the hydrogen is going to\Ngo into its plus 1 state. Dialogue: 0,0:15:18.19,0:15:20.96,Default,,0000,0000,0000,,If, over here, I had a bunch of\Nalkali and alkaline earth Dialogue: 0,0:15:20.96,0:15:22.74,Default,,0000,0000,0000,,metals, I wouldn't be so sure. Dialogue: 0,0:15:22.74,0:15:24.09,Default,,0000,0000,0000,,I'd say, oh, maybe hydrogen\Nwould take Dialogue: 0,0:15:24.09,0:15:25.91,Default,,0000,0000,0000,,electrons from them. Dialogue: 0,0:15:25.91,0:15:27.28,Default,,0000,0000,0000,,But anyway. Dialogue: 0,0:15:27.28,0:15:30.68,Default,,0000,0000,0000,,So these all gave an electron\Nto this carbon. Dialogue: 0,0:15:30.68,0:15:36.78,Default,,0000,0000,0000,,So just from these hydrogens,\Nthat carbon would have a minus Dialogue: 0,0:15:36.78,0:15:39.74,Default,,0000,0000,0000,,3 oxidation state, right? Dialogue: 0,0:15:39.74,0:15:41.26,Default,,0000,0000,0000,,These lost electrons. Dialogue: 0,0:15:41.26,0:15:43.56,Default,,0000,0000,0000,,This guy gained three electrons,\Nso his charge Dialogue: 0,0:15:43.56,0:15:45.43,Default,,0000,0000,0000,,goes down by 3. Dialogue: 0,0:15:45.43,0:15:46.68,Default,,0000,0000,0000,,The carbon-carbon bond. Dialogue: 0,0:15:46.68,0:15:48.72,Default,,0000,0000,0000,,Well, there's no reason one\Ncarbon should take electrons Dialogue: 0,0:15:48.72,0:15:49.57,Default,,0000,0000,0000,,from another carbon. Dialogue: 0,0:15:49.57,0:15:51.62,Default,,0000,0000,0000,,All carbons are created equal. Dialogue: 0,0:15:51.62,0:15:53.92,Default,,0000,0000,0000,,So there should be\Nno transfer here. Dialogue: 0,0:15:53.92,0:15:56.16,Default,,0000,0000,0000,,So this carbon's oxidation\Nstatus is 3. Dialogue: 0,0:15:56.16,0:15:57.23,Default,,0000,0000,0000,,Now what about on this side? Dialogue: 0,0:15:57.23,0:16:01.56,Default,,0000,0000,0000,,So we know that this hydrogen\Nis going to have a plus 1 Dialogue: 0,0:16:01.56,0:16:02.92,Default,,0000,0000,0000,,oxidation state. Dialogue: 0,0:16:02.92,0:16:05.47,Default,,0000,0000,0000,,It's going to give its electron\Nto this oxygen. Dialogue: 0,0:16:05.47,0:16:08.87,Default,,0000,0000,0000,,This oxygen, like most oxygens,\Nare going to take up Dialogue: 0,0:16:08.87,0:16:09.64,Default,,0000,0000,0000,,two electrons. Dialogue: 0,0:16:09.64,0:16:12.98,Default,,0000,0000,0000,,One from this carbon, and\None from this hydrogen. Dialogue: 0,0:16:12.98,0:16:16.46,Default,,0000,0000,0000,,So it's going to have a minus\N2 oxidation state. Dialogue: 0,0:16:16.46,0:16:19.14,Default,,0000,0000,0000,,This oxygen is also going\Nto take two electrons. Dialogue: 0,0:16:19.14,0:16:20.60,Default,,0000,0000,0000,,In this case, both of\Nthem are going to be Dialogue: 0,0:16:20.60,0:16:22.37,Default,,0000,0000,0000,,from this orange carbon. Dialogue: 0,0:16:22.37,0:16:24.87,Default,,0000,0000,0000,,So it's going to have a minus\N2 oxidation state. Dialogue: 0,0:16:24.87,0:16:26.84,Default,,0000,0000,0000,,So what's the oxidation\Nstate of this carbon? Dialogue: 0,0:16:26.84,0:16:33.19,Default,,0000,0000,0000,,It lost two electrons to this\Nguy up here, and it lost one Dialogue: 0,0:16:33.19,0:16:35.45,Default,,0000,0000,0000,,electron to this oxygen\Ndown here. Dialogue: 0,0:16:35.45,0:16:37.64,Default,,0000,0000,0000,,Remember, this guy got one\Nelectron from the carbon and Dialogue: 0,0:16:37.64,0:16:39.05,Default,,0000,0000,0000,,one from the hydrogen. Dialogue: 0,0:16:39.05,0:16:41.99,Default,,0000,0000,0000,,So it lost one electron\Nhere, two there. Dialogue: 0,0:16:41.99,0:16:43.77,Default,,0000,0000,0000,,It lost three electrons. Dialogue: 0,0:16:43.77,0:16:49.05,Default,,0000,0000,0000,,So in that reality, it would\Nhave a plus 3 charge. Dialogue: 0,0:16:49.05,0:16:53.08,Default,,0000,0000,0000,,So it turns out that the average\Noxidation state for Dialogue: 0,0:16:53.08,0:16:54.93,Default,,0000,0000,0000,,the carbon in acetic\Nacid is 0. Dialogue: 0,0:16:54.93,0:16:58.15,Default,,0000,0000,0000,,Because if you average minus\N3 and plus 3, you get to 0. Dialogue: 0,0:16:58.15,0:17:00.27,Default,,0000,0000,0000,,And that's why I said, oh,\Nmaybe these are a 0. Dialogue: 0,0:17:00.27,0:17:03.73,Default,,0000,0000,0000,,But if you actually write out\Ntheir oxidation numbers, this Dialogue: 0,0:17:03.73,0:17:07.41,Default,,0000,0000,0000,,green C has a minus\N3 oxidation state. Dialogue: 0,0:17:07.41,0:17:10.66,Default,,0000,0000,0000,,And this orange C, this\Norange carbon, has a Dialogue: 0,0:17:10.66,0:17:12.88,Default,,0000,0000,0000,,plus 3 oxidation state. Dialogue: 0,0:17:12.88,0:17:15.50,Default,,0000,0000,0000,,If you got this one, and I\Ndon't think it's overly Dialogue: 0,0:17:15.50,0:17:22.13,Default,,0000,0000,0000,,complex, you will be an\Noxidation state jock. Dialogue: 0,0:17:22.13,0:17:23.72,Default,,0000,0000,0000,,So I think you're all set now. Dialogue: 0,0:17:23.72,0:17:26.52,Default,,0000,0000,0000,,In the next video, we're going\Nto start exploring oxidation Dialogue: 0,0:17:26.52,0:17:28.15,Default,,0000,0000,0000,,reduction reactions. Dialogue: 0,0:17:28.15,0:17:28.27,Default,,0000,0000,0000,,