我在四年级的时候, 小学老师有一天跟我们说: “偶数的个数 和正整数的个数一样多。” “真的吗?”我心想。 噢对!两个都是无限多个,所以一样多。 但另一方面,偶数只是正整数的一部份, 而奇数就是剩下的部份, 所以正整数应该要比偶数还多,对吧? 要了解老师那段话的道理, 我们必须知道两个集合一样大 是什么意思。 当我说我左手的手指 和右手的手指一样多时,这意谓着什么? 当然,两只手都是五根手指, 但是可以更简单一些。 我不用去算,我只要知道 我能够将它们“一对一”对应起来。 事实上,我们认为古代那些 语言里数字只到三的人们 就是用这个技俩。 如果你把你的羊从羊圈里放出去吃草, 你可以随时知道有几只羊跑出去。 你只要在羊出去时将一颗石子放旁边, 然后在羊回来的时候 再把石子放回来就好。 这样你就不会乱掉, 尽管你没有真的去算羊的数目。 另一个“一对一”的例子 比计数更单纯一些。 如果在一个拥挤的礼堂里, 每个位子都有人坐而且没人站着, 这样我就知道 人数跟椅子数一样多, 虽然说我并不知道 这两者的个数。 所以,我们说两个集合一样大时, 它真正的意思就是 两集合里的元素 有办法“一对一”对应在一起。 所以小学老师将正整数写成一列, 并将数字的两倍写在下面。 你可以看到,底部那列 包含了所有的偶数, 这样就有了“一对一”的对应。 也就是说,偶数和正整数一样多。 但依旧困扰着我们的是 偶数只是正整数的一部份这件事实。 不过这样能说服你 我左右手手指数目不同吗? 当然没有!就算有的方法 配对失败,那也没关系, 因为这并没说服我们什么。 如果你可以找到一种方法 让两边元素配对起来, 那我们就说这两个集合个数一样。 你有办法将分数像正整数那样列出来吗? 这可能有点难,分数有很多! 而且不太明显哪个要放前面, 或是怎样把它们串起来。 不过,有一个办法 我们可以把所有分数依序串起来。 这是十九世纪末 数学家康托尔的贡献。 首先,我们把分数上下左右对好。 全部的分数都在这。比如说,你可以找到 117/243 它在第 117 列第 243 行。 现在我们要把它们串起来, 从左上开始,然后 斜对角地串下来、串上去。 其中像 2/2 这类之前已经算过的分数 就把它跳掉。 因此我们就把分数串成一串了, 这意思是分数 和正整数有“一对一”的对应, 虽然我们直觉是分数比较多个。 好,这就是有趣的地方了。 你也许知道用分数没办法表示所有的实数 ──也就是那些数线上的数。 像是根号 2,还有圆周率 π 这些。 这类的数字叫作“无理数”。 不只是因为它们很难懂, 而是因为分数包含了 所有整数的“比率”,所以被叫“可比的”, 而剩的就被叫作“不可比的”, 也就是“无理的”。 无理数可以用无穷小数表示, 而且各位数没有规律。 那么,我们可以将正整数和 所有无理、有理的小数 “一对一”对应吗? 也就是,我们可以将所有小数串起来吗? 康托尔证明了这行不通。 不只想不到办法,而是真的没办法。 来看看,如果你声称你把小数串好了。 我要来告诉你这是不可能的, 因为我要找一个你那串那面没有的小数。 我要在小数点后一个一个位数决定。 我要用你那串的第 1 个数字的第 1 位数 来决定我的第 1 位数。 如果它是 1,我的就是 2;否则我的就是 1。 再用你的第 2 个数字的第 2 位数 来决定我的第 2 位数。 一样,如果你的是 1,我的就是 2; 否则我的就是 1。 看出怎么算下去了吗? 我找到的这个小数,不可能在你那串里。 为什么?比如它和你的 第 143 个数会一样吗? 不可能,因为第 143 位数里, 你的和我的不一样。 这是我特别挑的。 你没串成功。 没有串到所有小数。 而不论你怎么串,我都可以做同样的事, 然后找到一个你那串里没出现的小数。 所以我们得到了 令人讶异的结论: 所有小数没办法串成一串。 它的“无限大”比正整数的“无限大”还大。 所以,尽管你只熟悉几个无理数, 像是根号 2 和圆周率 π, 无理数的“无限大”实际上也比 分数的“无限大”还要大。 有人曾这样比喻: 有理数,或者说分数,就像天空的星星; 而无理数就像是无尽的黑暗。 康托尔同时也证明任何无穷大的集合, 只要把它的所有子集都搜集起来, 新的集合的“无限大”就比原本的还大。 意思是说,只要你有一种“无限大” 那你就可以用它的所有子集 来做出比它更“无限大”的集合。 接着再用这集合做出更加“无限大”的集合。 不断做下去。 所以,“无限大”之间也是有分不同的大小。 如果你觉得这令人不适,这并不奇怪。 一些康托尔那年代的伟大数学家 也对这观念非常反感。 他们试着要把无限这观念抽离, 让数学可以 没有无限也能运作。 康托尔甚至受到人身攻击, 严重到让他饱受忧郁之苦, 并且在精神疗院渡过后半余生。 不过他的想法最终得到肯定。 今天,这观念被认为是基础并重要的。 所有数学研究者都接受这观念, 每个数学系都也都在教, 而我刚刚已经花了几分钟来解释。 也许有一天,这会变成大家的常识。 还有一点。我们刚刚指出 小数,也就是实数, 比正整数的“无限大”还多。 康托尔在想两个“无限大”之间 是否还有不同层级的“无限大”。 我们不这么认为,但也没办法证明。 康托尔的猜想变成 有名的“连续统假说”。 在 1900 年,大数学家希尔伯特 把连续统假说列为 数学里最重要的未解问题。 这问题在 20 世纪露出一些端倪, 但是结果和超乎预期,并跌破大家眼镜。 在 1920 年代,哥德尔证明了 你不可能证明连续统假说是错的。 接着在 1960 年代,寇恩证明了 你不可能证明连续统假说是对的。 合在一起,这些结果告诉你 数学里也有一些不能回答的问题。 这是一个很令人震惊的结论。 数学被公认是人类逻辑的结晶, 但现在我们知道 就算是数学也有它的极限。 还有就是,数学里有一些值得我们思考, 而且很令人着迷的道理。